Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drilling down to the nanometer depths of leaves for biofuels

20.07.2010
By imaging the cell walls of a zinnia leaf down to the nanometer scale, energy researchers have a better idea about how to turn plants into biofuels.

In a paper appearing online in the journal Plant Physiology, a team from Lawrence Livermore led by Michael Thelen, in collaboration with researchers from Lawrence Berkeley National Lab and the National Renewable Energy Laboratory, has used four different imaging techniques to systematically drill down deep into the cells of Zinnia elegans.

Zinnia is a common garden annual plant with solitary daisy like flower heads on long stems and sandpapery, lace shaped leaves. The leaves of seedlings provide a rich source of single cells that are dark green with chloroplasts and can be cultured in liquid for several days at a time. During the culturing process, the cells change in shape to resemble the tube-like cells that carry water from roots to leaves. Known as xylem, these cells hold the bulk of cellulose and lignin in plants, which are both major targets of recent biofuel research.

Using different microscopy methods, the team was able to visualize single cells in detail, cellular substructures, fine-scale organization of the cell wall, and even chemical composition of single zinnia cells, indicating that they contain an abundance of lignocellulose.

“The basic idea is that cellulose is a polymer of sugars, which if released by enzymes, can be converted into alcohols and other chemicals used in alternative fuel production,” Thelen said. “But for this to happen efficiently, we need to find ways to see how this is proceeding at several spatial scales.”

To get at the sugars is no easy task. The team had to find ways to overcome the hydrophobic protection of crystalline cellulose provided by lignin in the cell wall. The two polymers, collectively called lignocellulose, are very insoluble, resistant to common chemicals and mechanical breakage, and are a superior substance for providing strength and structure to plants.

The detailed three-dimensional molecular cell wall structure of plants remains poorly understood.

“The capability to image plant cell surfaces at the nanometer scale, together with the corresponding chemical composition, could significantly enhance our understanding of cell wall molecular architecture,” said Alex Malkin, a member of the LLNL team who is an expert in atomic force microscopy. “A high resolution structural model is crucial for the successful implementation of new approaches for conversion of biomass to liquid fuels.”

To make fuels from plant biomass requires a thorough understanding of the organization of cell walls before determining the best methods for cell wall deconstruction into its components. Catherine Lacayo, a postdoctoral scientist working with Thelen and Malkin, has taken the first steps toward a comprehensive approach.

She came up with techniques that reveal the inner structure of cell walls in these single xylem cells, which represent about 70 percent of the cellulose in plants that can be used in fuel processing. “This approach will be useful for evaluating the responses of plant material to various chemical and enzymatic treatments, and could accelerate the current efforts in lignocellulosic biofuel production.”

The research is supported by the Department of Energy Genome Sciences Program through the Office of Biological and Environmental Research, and the DOE’s BioEnergy Research Centers in Emeryville and Oak Ridge. It will appear in the September issue of Plant Physiology.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>