Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sun protection

16.10.2015

Researchers observe one of the world's fastest chemical reactions for the first time.

UV radiation often damages our DNA. Researchers at Kiel University and The University of Bristol, Great Britain, have now seen for the first time what happens in DNA building blocks when they are stimulated by ultraviolet light, and what they do to prevent themselves from being destroyed.


Nature has developed clever mechanisms to protect our DNA from damaging radiation.

Photo: Enzymlogic, Licence: CC-BY-SA 2.0

The results show: the molecules use the absorbed energy to set off a completely harmless reaction which prevents the genes being altered. The study can be found in the current edition of the journal Angewandte Chemie (Applied Chemistry).

Our DNA contains the bases adenine, guanine, cytosine and thymine. The chemists used ultra short blasts of light to shoot base pairs guanine and cytosine which were stimulated with UV light. They were only able to reveal the protective molecular mechanism using this method of femtosecond spectroscopy, because the process happened within a few quadrillionths of a second.

During the so-called electron-driven proton transfer process (EDPT), a hydrogen atom is displaced within the molecular compound. The base pair, however, immediately returns to its original starting structure from the same procedure. "Nature uses the reaction to strengthen the DNA's resistance to light by orders of magnitude - it is sort of a sun protection for DNA", said Professor Friedrich Temps, head of the Kiel research team from the Institute of Physical Chemistry.

"The DNA building blocks themselves thereby relieve the cells' hugely complex and very slowly active repair mechanisms using enzymes. The discovery of these enzymes this year was awarded the Nobel Prize for Chemistry. Without the passive processes we observed, the cells' active repair mechanisms would be completely overloaded", added Professor Andrew Orr-Ewing, head of the team in Bristol.

In a few cases, however, the base pair was not able to return to the original situation. Here, EDPT caused two hydrogen atoms to be displaced. "The product could be a mutagen precursor and lead to DNA damage", explained Dr Katharina Röttger from the English working group, who received her doctoral degree in Kiel. Future experiments will have to show what then happens to this molecule. "We can only say that the potentially mutagen molecule survived our measurement time frame of one nanosecond (= a billionth of a second)", said Röttger.

The scientists now want to find out whether the same processes also occur in a long DNA strand. The many interactions within and between the molecules and in the hydrogen bridges make this undertaking more complicated, however. Extremely fast reactions are often covered up by slower ones. Professor Temps and Professor Orr-Ewing are confident that the analysis tools of their working groups will soon be able to solve this puzzle, too.

Original publication
K. Röttger, H. J. B. Marroux, M. P. Grubb, P. M. Coulter, H. Böhnke, A. S. Henderson, M. C. Galan, F. Temps, A. J. Orr-Ewing, G. M. Roberts, "Ultraviolet Absorption Induces Hydrogen-Atom Transfer in G∙C Watson-Crick DNA Base Pairs in Solution", Angew. Chem. Int. Ed. 54, (2015). DOI: 10.1002/anie.201506940
Link: http://onlinelibrary.wiley.com/doi/10.1002/anie.201506940/abstract


Photos are available to download:
http://www.uni-kiel.de/download/pm/2015/2015-368-1.png
Caption: Katharina Röttger, Faculty prize winner for 2014 at Kiel University, investigated a chemical process in DNA base pairs, together with colleagues, using extremely short pulses of light.
Photo/Copyright: Jürgen Haacks, Kiel University

http://www.uni-kiel.de/download/pm/2015/2015-368-2.jpg
Caption: Friedrich Temps is developing methods in Kiel which can be used to observe ultra fast chemical processes.
Photo/Copyright: Denis Schimmelpfennig, Kiel University

http://www.uni-kiel.de/download/pm/2015/2015-368-3.jpg
Caption: The study from Kiel and Bristol will adorn the inside cover of Angewandte Chemie. It shows the process that was investigated on how DNA protects itself from ultraviolet radiation.
Figure/Copyright: Angewandte Chemie, John Wiley & Sons

Further information:
http://www.temps.phc.uni-kiel.de/en

The study was carried out within the Collaborative Research Centre 677 “Function by Switching”, where scientists investigate and create molecular switching processes: www.sfb677.uni-kiel.de.

Details, which are only a millionth of a millimetre in size: This is what the research focus "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between materials science, chemistry, physics, biology, electrical engineering, computer science, food technology and various branches of medicine, the research focus aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at www.kinsis.uni-kiel.de

Contact:
Professor Dr Friedrich Temps
The Institute of Physical Chemistry
Tel.: +49 (0)431 880 7800
E-mail: temps@phc.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Further reports about: Angewandte Chemie DNA building blocks cytosine enzymes materials sun protection ultraviolet

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>