Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sun protection

16.10.2015

Researchers observe one of the world's fastest chemical reactions for the first time.

UV radiation often damages our DNA. Researchers at Kiel University and The University of Bristol, Great Britain, have now seen for the first time what happens in DNA building blocks when they are stimulated by ultraviolet light, and what they do to prevent themselves from being destroyed.


Nature has developed clever mechanisms to protect our DNA from damaging radiation.

Photo: Enzymlogic, Licence: CC-BY-SA 2.0

The results show: the molecules use the absorbed energy to set off a completely harmless reaction which prevents the genes being altered. The study can be found in the current edition of the journal Angewandte Chemie (Applied Chemistry).

Our DNA contains the bases adenine, guanine, cytosine and thymine. The chemists used ultra short blasts of light to shoot base pairs guanine and cytosine which were stimulated with UV light. They were only able to reveal the protective molecular mechanism using this method of femtosecond spectroscopy, because the process happened within a few quadrillionths of a second.

During the so-called electron-driven proton transfer process (EDPT), a hydrogen atom is displaced within the molecular compound. The base pair, however, immediately returns to its original starting structure from the same procedure. "Nature uses the reaction to strengthen the DNA's resistance to light by orders of magnitude - it is sort of a sun protection for DNA", said Professor Friedrich Temps, head of the Kiel research team from the Institute of Physical Chemistry.

"The DNA building blocks themselves thereby relieve the cells' hugely complex and very slowly active repair mechanisms using enzymes. The discovery of these enzymes this year was awarded the Nobel Prize for Chemistry. Without the passive processes we observed, the cells' active repair mechanisms would be completely overloaded", added Professor Andrew Orr-Ewing, head of the team in Bristol.

In a few cases, however, the base pair was not able to return to the original situation. Here, EDPT caused two hydrogen atoms to be displaced. "The product could be a mutagen precursor and lead to DNA damage", explained Dr Katharina Röttger from the English working group, who received her doctoral degree in Kiel. Future experiments will have to show what then happens to this molecule. "We can only say that the potentially mutagen molecule survived our measurement time frame of one nanosecond (= a billionth of a second)", said Röttger.

The scientists now want to find out whether the same processes also occur in a long DNA strand. The many interactions within and between the molecules and in the hydrogen bridges make this undertaking more complicated, however. Extremely fast reactions are often covered up by slower ones. Professor Temps and Professor Orr-Ewing are confident that the analysis tools of their working groups will soon be able to solve this puzzle, too.

Original publication
K. Röttger, H. J. B. Marroux, M. P. Grubb, P. M. Coulter, H. Böhnke, A. S. Henderson, M. C. Galan, F. Temps, A. J. Orr-Ewing, G. M. Roberts, "Ultraviolet Absorption Induces Hydrogen-Atom Transfer in G∙C Watson-Crick DNA Base Pairs in Solution", Angew. Chem. Int. Ed. 54, (2015). DOI: 10.1002/anie.201506940
Link: http://onlinelibrary.wiley.com/doi/10.1002/anie.201506940/abstract


Photos are available to download:
http://www.uni-kiel.de/download/pm/2015/2015-368-1.png
Caption: Katharina Röttger, Faculty prize winner for 2014 at Kiel University, investigated a chemical process in DNA base pairs, together with colleagues, using extremely short pulses of light.
Photo/Copyright: Jürgen Haacks, Kiel University

http://www.uni-kiel.de/download/pm/2015/2015-368-2.jpg
Caption: Friedrich Temps is developing methods in Kiel which can be used to observe ultra fast chemical processes.
Photo/Copyright: Denis Schimmelpfennig, Kiel University

http://www.uni-kiel.de/download/pm/2015/2015-368-3.jpg
Caption: The study from Kiel and Bristol will adorn the inside cover of Angewandte Chemie. It shows the process that was investigated on how DNA protects itself from ultraviolet radiation.
Figure/Copyright: Angewandte Chemie, John Wiley & Sons

Further information:
http://www.temps.phc.uni-kiel.de/en

The study was carried out within the Collaborative Research Centre 677 “Function by Switching”, where scientists investigate and create molecular switching processes: www.sfb677.uni-kiel.de.

Details, which are only a millionth of a millimetre in size: This is what the research focus "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between materials science, chemistry, physics, biology, electrical engineering, computer science, food technology and various branches of medicine, the research focus aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at www.kinsis.uni-kiel.de

Contact:
Professor Dr Friedrich Temps
The Institute of Physical Chemistry
Tel.: +49 (0)431 880 7800
E-mail: temps@phc.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Further reports about: Angewandte Chemie DNA building blocks cytosine enzymes materials sun protection ultraviolet

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>