Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Signature Found in Ice Storm Babies

02.10.2014

Prenatal maternal stress exposure to natural disasters predicts epigenetic profile of offspring

Scientists from the Douglas Mental Health University Institute and McGill University have detected a distinctive ‘signature’ in the DNA of children born in the aftermath of the massive Quebec ice storm.

Five months after the event, researchers recruited women who had been pregnant during the disaster and assessed their degrees of hardship and distress in a study called Project Ice Storm.

More than a decade later, the researchers found that DNA within the T cells - a type of immune system cell - of 36 children showed distinctive patterns in DNA methylation.

The researchers concluded for the first time that maternal hardship, predicted the degree of methylation of DNA in the T cells. The “epigenetic” signature plays a role in the way the genes express themselves. This study is also the first to show that it is the objective stress exposure (such as days without electricity) and not the degree of emotional distress in pregnant women that causes long lasting changes in the epigenome of their babies.

The health impacts on these children is less clear, but changes in the family of genes related to immunity and sugar metabolism detected in these babies, now teenagers, may put them at a greater risk to develop asthma, diabetes or obesity.

Among the team of scientists who conducted this study are Lei Cao-Lei, Psychological Research Division, Douglas Institute Research Center and Department of Psychiatry, McGill University, Moshe Szyf, Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, and Suzanne King, Psychological Research Division, Douglas Institute Research Center and Department of Psychiatry, McGill University.

Results of this study have been published in the international online publication PLOS ONE on September 19th, 2014.

In June 2014, Project Ice Storm results reported in the journals BioMed Research International and Psychiatry Research showed links between prenatal maternal stress (PNMS) and the development of symptoms of asthma and autism, respectively, in the children.

About Project Ice Storm
When the ice storms of January 1998 plunged more than 3 million Quebecers into darkness for as long as 45 days, the team seized the opportunity to study the effects of stress on pregnant women, their pregnancies, and their unborn children. The team has been following a group of about 150 families, in which the mother was pregnant during the ice storm or became pregnant shortly thereafter, in order to observe the immediate effects of different levels and types of stress on the unborn children. It continues to follow these children, who are now teenagers.

Contact Information

Cynthia Lee
McGill University
cynthia.lee@mcgill.ca

Cynthia Lee | newswise
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>