Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Signature Found in Ice Storm Babies

02.10.2014

Prenatal maternal stress exposure to natural disasters predicts epigenetic profile of offspring

Scientists from the Douglas Mental Health University Institute and McGill University have detected a distinctive ‘signature’ in the DNA of children born in the aftermath of the massive Quebec ice storm.

Five months after the event, researchers recruited women who had been pregnant during the disaster and assessed their degrees of hardship and distress in a study called Project Ice Storm.

More than a decade later, the researchers found that DNA within the T cells - a type of immune system cell - of 36 children showed distinctive patterns in DNA methylation.

The researchers concluded for the first time that maternal hardship, predicted the degree of methylation of DNA in the T cells. The “epigenetic” signature plays a role in the way the genes express themselves. This study is also the first to show that it is the objective stress exposure (such as days without electricity) and not the degree of emotional distress in pregnant women that causes long lasting changes in the epigenome of their babies.

The health impacts on these children is less clear, but changes in the family of genes related to immunity and sugar metabolism detected in these babies, now teenagers, may put them at a greater risk to develop asthma, diabetes or obesity.

Among the team of scientists who conducted this study are Lei Cao-Lei, Psychological Research Division, Douglas Institute Research Center and Department of Psychiatry, McGill University, Moshe Szyf, Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics and Developmental Psychobiology, McGill University, and Suzanne King, Psychological Research Division, Douglas Institute Research Center and Department of Psychiatry, McGill University.

Results of this study have been published in the international online publication PLOS ONE on September 19th, 2014.

In June 2014, Project Ice Storm results reported in the journals BioMed Research International and Psychiatry Research showed links between prenatal maternal stress (PNMS) and the development of symptoms of asthma and autism, respectively, in the children.

About Project Ice Storm
When the ice storms of January 1998 plunged more than 3 million Quebecers into darkness for as long as 45 days, the team seized the opportunity to study the effects of stress on pregnant women, their pregnancies, and their unborn children. The team has been following a group of about 150 families, in which the mother was pregnant during the ice storm or became pregnant shortly thereafter, in order to observe the immediate effects of different levels and types of stress on the unborn children. It continues to follow these children, who are now teenagers.

Contact Information

Cynthia Lee
McGill University
cynthia.lee@mcgill.ca

Cynthia Lee | newswise
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>