Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA shows that last woolly mammoths had North American roots

08.09.2008
In a surprising reversal of conventional wisdom, a DNA-based study has revealed that the last of the woolly mammoths—which lived between 40,000 and 4,000 years ago—had roots that were exclusively North American.

The research, which appears in the September issue of Current Biology, is expected to cause some controversy within the paleontological community.

"Scientists have always thought that because mammoths roamed such a huge territory—from Western Europe to Central North America—that North American woolly mammoths were a sideshow of no particular significance to the evolution of the species," said Hendrik Poinar, associate professor in the departments of Anthropology, and Pathology & Molecular Medicine at McMaster University.

Poinar and Régis Debruyne, a postdoctoral research fellow in Poinar's lab, spent the last three years collecting and sampling mammoths over much of their former range in Siberia and North America, extracting DNA and meticulously piecing together, comparing and overlapping hundreds of mammoth specimen using the second largest ancient DNA dataset available.

... more about:
»DNA »Poinar »SIBERIA »mammoth »woolly mammoth

"Migrations over Beringia [the land bridge that once spanned the Bering Strait] were rare; it served as a filter to keep eastern and western groups or populations of woollies apart, says Poinar. "However, it now appears that mammoths established themselves in North America much earlier than presumed, then migrated back to Siberia, and eventually replaced all pre-existing haplotypes of mammoths."

"Small-scale population replacements, as we call them, are not a rare phenomenon within species, but ones occurring on a continental scale certainly are," says Ross MacPhee, curator of mammalogy at the American Museum of Natural History, and one of the researchers on the study. "We never expected that there might have been a complete overturn in woolly mammoths, but this is the sort of discoveries that are being made using ancient DNA. Bones and teeth are not always sensitive guides."

"Like paleontologists, molecular biologists have long been operating under a geographic bias," says Debruyne. "For more than a century, any discussion on the woolly mammoth has primarily focused on the well-studied Eurasian mammoths. Little attention was dedicated to the North American samples, and it was generally assumed their contribution to the evolutionary history of the species was negligible. This study certainly proves otherwise."

The origin of mammoths is controversial in itself. Some scientists believe that the first proto-mammoths arose in Africa about seven-million years ago in concert with ancestors of the Asian elephant. Around five to six million years ago, an early mammoth species migrated north into China, Siberia and, eventually, North America. This early dispersal into North America gave rise to a new mammoth known as the Columbian mammoth. Much later, back in Siberia, a cold-adapted form—the woolly mammoth—evolved and eventually crossed over the Beringian land bridge into present-day Alaska and the Yukon.

What happened next, says Poinar, is a mystery: The Siberian genetic forms began to disappear and were replaced by North American migrants.

"The study of evolution is an evolution in itself," says Poinar. "This latest research shows we're drilling down and getting a closer and better understanding of the origins of life on our planet."

Jane Christmas | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: DNA Poinar SIBERIA mammoth woolly mammoth

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>