Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA shows that last woolly mammoths had North American roots

08.09.2008
In a surprising reversal of conventional wisdom, a DNA-based study has revealed that the last of the woolly mammoths—which lived between 40,000 and 4,000 years ago—had roots that were exclusively North American.

The research, which appears in the September issue of Current Biology, is expected to cause some controversy within the paleontological community.

"Scientists have always thought that because mammoths roamed such a huge territory—from Western Europe to Central North America—that North American woolly mammoths were a sideshow of no particular significance to the evolution of the species," said Hendrik Poinar, associate professor in the departments of Anthropology, and Pathology & Molecular Medicine at McMaster University.

Poinar and Régis Debruyne, a postdoctoral research fellow in Poinar's lab, spent the last three years collecting and sampling mammoths over much of their former range in Siberia and North America, extracting DNA and meticulously piecing together, comparing and overlapping hundreds of mammoth specimen using the second largest ancient DNA dataset available.

... more about:
»DNA »Poinar »SIBERIA »mammoth »woolly mammoth

"Migrations over Beringia [the land bridge that once spanned the Bering Strait] were rare; it served as a filter to keep eastern and western groups or populations of woollies apart, says Poinar. "However, it now appears that mammoths established themselves in North America much earlier than presumed, then migrated back to Siberia, and eventually replaced all pre-existing haplotypes of mammoths."

"Small-scale population replacements, as we call them, are not a rare phenomenon within species, but ones occurring on a continental scale certainly are," says Ross MacPhee, curator of mammalogy at the American Museum of Natural History, and one of the researchers on the study. "We never expected that there might have been a complete overturn in woolly mammoths, but this is the sort of discoveries that are being made using ancient DNA. Bones and teeth are not always sensitive guides."

"Like paleontologists, molecular biologists have long been operating under a geographic bias," says Debruyne. "For more than a century, any discussion on the woolly mammoth has primarily focused on the well-studied Eurasian mammoths. Little attention was dedicated to the North American samples, and it was generally assumed their contribution to the evolutionary history of the species was negligible. This study certainly proves otherwise."

The origin of mammoths is controversial in itself. Some scientists believe that the first proto-mammoths arose in Africa about seven-million years ago in concert with ancestors of the Asian elephant. Around five to six million years ago, an early mammoth species migrated north into China, Siberia and, eventually, North America. This early dispersal into North America gave rise to a new mammoth known as the Columbian mammoth. Much later, back in Siberia, a cold-adapted form—the woolly mammoth—evolved and eventually crossed over the Beringian land bridge into present-day Alaska and the Yukon.

What happened next, says Poinar, is a mystery: The Siberian genetic forms began to disappear and were replaced by North American migrants.

"The study of evolution is an evolution in itself," says Poinar. "This latest research shows we're drilling down and getting a closer and better understanding of the origins of life on our planet."

Jane Christmas | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: DNA Poinar SIBERIA mammoth woolly mammoth

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>