Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA mutations linked to diabetes

Genes that regulate the energy consumption of cells have a different structure and expression in type II diabetics than they do in healthy people, according to a new study from the Swedish medical university Karolinska Institutet published in Cell Metabolism. The researchers believe that these ¡®epigenetic mutations' might have a key part to play in the development of the disease.

Type II diabetes is characterised by a lower sensitivity to insulin in muscles and organs, and a reduced ability to consume energy in the form of glucose. Heredity and environmental factors (e.g. exercise) are both involved in the disease pathogenesis, but scientists are still unclear as to the mechanisms behind it.

A research group at Karolinska Institutet has now shown that genes in the muscle cells of diabetics are chemically modified through what is known as DNA methylation. They found that in muscles cells taken from patients with early-onset diabetes, a gene designated as PGC-1¦Á was modified and had reduced expression. PGC-1¦Á controls other genes that regulate the metabolism of glucose by the cell.

The team has also demonstrated that DNA methylation occurs rapidly, when cells from healthy people are exposed to certain factors associated with diabetes, such as raised levels of free fatty acids and cytokines. DNA methylation is a form of epigenetic regulation, a process involving chemical modifications that are imposed externally on genes and that alter their activity without any change to the underlying DNA sequence.

"This type of epigenetic modification might be the link that explains how environmental factors have a long-term influence on the development of type II diabetes," says Juleen Zierath, who led the study. "It remains to be seen whether the DNA methylation of this gene can be affected by, say, dietary factors."

Full bibliographic information
¡°Non-CpG Methylation of the PGC-1¦Á Promoter through DNMT3B Controls Mitochondrial Density¡±, Romain Barr¨¨s, Megan E. Osler, Jie Yan, Anna Rune, Tomas Fritz, Kenneth Caidahl, Anna Krook and Juleen R. Zierath, Cell Metabolism, 2 September 2009.

Katarina Sternudd | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>