Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA mutations linked to diabetes

02.09.2009
Genes that regulate the energy consumption of cells have a different structure and expression in type II diabetics than they do in healthy people, according to a new study from the Swedish medical university Karolinska Institutet published in Cell Metabolism. The researchers believe that these ¡®epigenetic mutations' might have a key part to play in the development of the disease.

Type II diabetes is characterised by a lower sensitivity to insulin in muscles and organs, and a reduced ability to consume energy in the form of glucose. Heredity and environmental factors (e.g. exercise) are both involved in the disease pathogenesis, but scientists are still unclear as to the mechanisms behind it.

A research group at Karolinska Institutet has now shown that genes in the muscle cells of diabetics are chemically modified through what is known as DNA methylation. They found that in muscles cells taken from patients with early-onset diabetes, a gene designated as PGC-1¦Á was modified and had reduced expression. PGC-1¦Á controls other genes that regulate the metabolism of glucose by the cell.

The team has also demonstrated that DNA methylation occurs rapidly, when cells from healthy people are exposed to certain factors associated with diabetes, such as raised levels of free fatty acids and cytokines. DNA methylation is a form of epigenetic regulation, a process involving chemical modifications that are imposed externally on genes and that alter their activity without any change to the underlying DNA sequence.

"This type of epigenetic modification might be the link that explains how environmental factors have a long-term influence on the development of type II diabetes," says Juleen Zierath, who led the study. "It remains to be seen whether the DNA methylation of this gene can be affected by, say, dietary factors."

Full bibliographic information
¡°Non-CpG Methylation of the PGC-1¦Á Promoter through DNMT3B Controls Mitochondrial Density¡±, Romain Barr¨¨s, Megan E. Osler, Jie Yan, Anna Rune, Tomas Fritz, Kenneth Caidahl, Anna Krook and Juleen R. Zierath, Cell Metabolism, 2 September 2009.

Katarina Sternudd | alfa
Further information:
http://ki.se/ki/jsp/polopoly.jsp?l=en&d=130&a=82298&newsdep=130

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>