Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Is DNA from mom or dad?

New technique will accelerate personalized medicine

A new technique successfully takes on a longstanding challenge in DNA sequencing – determining whether a particular genetic sequence comes from an individual's mother or father.

The method, described in a Ludwig Cancer Research study in Nature Biotechnology, promises to accelerate studies of how genes contribute to disease, improve the process of matching donors with organs and help scientists better understand human migration patterns.

"The technique will enable clinicians to better assess a person's individual risk for disease. It is potentially transformative for personalized medicine," says Bing Ren, Ludwig scientist at the University of California, San Diego School of Medicine, who led the research on the new technique, called "HaploSeq."

"Current sequencing technologies are fast and rapidly getting cheaper – an individual's genome can now be sequenced in about a week for $5,000," says Ren. "In the not too distant future, everyone's genome will be sequenced. That will become the standard of care." But, he explains, "There has been a problem with this scenario." Except for the sex chromosomes, everyone has two copies of each chromosome. One copy comes from mom, and the other from dad. Current techniques cannot distinguish between the two copies of each gene and, therefore, are not very good at determining whether particular genetic differences, such as a single-letter change in the DNA, originate with an individual's mother or father – muddying genetic analyses.

Ren's new technique, a mixture of molecular biology and computational biology approaches, bypasses this problem. The method enables researchers to quickly determine which genetic variants occur together on the same stretch of chromosome and, therefore, came from the same parent. "This advance has direct implications for the utility of genomics in clinical practice and will also have profound effects on genetic research and discovery," says Ludwig scientist Siddarth Selvaraj, who contributed to the study with Ren and fellow Ludwig researcher Jesse Dixon.

More immediately, the technique will enable clinicians to better assess a person's individual risk for disease, a cornerstone of personalized medicine. For instance, people at risk for a disease such as cancer often have more than one DNA mutation. HaploSeq could enable clinicians to determine if the two mutations are on the same chromosome or on different chromosomes, which can help in risk assessment – for instance, risk may be reduced if two mutations are on the same chromosome, since the 'good' chromosome can often compensate.

Similarly, the method, with further honing, has the potential to refine the currently cumbersome process of determining whether there is a genetic match between an organ donor and recipient. A large number of genes contribute to compatibility between donor and recipient, but there is a lot of genetic variability in these genes. The new technique could help determine whether DNA differences between donor and recipient are likely to be a good match. "This will require more study," says Ren, "but by creating a DNA database, it may be possible to more accurately and expediently pair recipients and donors."

The new method will also help researchers analyze human migration and determine ancestry from their DNA sequences. "In principal," says Ren, "you could compare your genetic sequence to your neighbor's and ask if you have any recent ancestors in common. With our technique we can study each individual and how they relate to other individuals. As we accumulate data from many individuals we can more precisely determine their relationships." Such findings will also bolster an ongoing international project to assess worldwide human genetic variation, the HapMap project.

One advantage of the new technique is that it builds on common sequencing technologies and should be easily adapted for use by clinicians and researchers alike. Says Ren, "I anticipate that this new method will be quite widely used."

This study was funded by the Ludwig Institute for Cancer Research and the Roadmap Epigenome Project (U01 ES017166).

About Ludwig Cancer Research

Ludwig Cancer Research is an international collaborative network of acclaimed scientists with a 40-year legacy of pioneering cancer discoveries. Ludwig combines basic research with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested more than $1.6 billion in life-changing cancer research through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers.

Bing Ren is a member of the Ludwig Institute for Cancer Research who is based at the University of California, San Diego. More information on the Ren lab can be found here:

For further information please contact Rachel Steinhardt, or +1-212-450-1582.

Rachel Steinhardt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>