Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is DNA from mom or dad?

04.11.2013
New technique will accelerate personalized medicine

A new technique successfully takes on a longstanding challenge in DNA sequencing – determining whether a particular genetic sequence comes from an individual's mother or father.

The method, described in a Ludwig Cancer Research study in Nature Biotechnology, promises to accelerate studies of how genes contribute to disease, improve the process of matching donors with organs and help scientists better understand human migration patterns.

"The technique will enable clinicians to better assess a person's individual risk for disease. It is potentially transformative for personalized medicine," says Bing Ren, Ludwig scientist at the University of California, San Diego School of Medicine, who led the research on the new technique, called "HaploSeq."

"Current sequencing technologies are fast and rapidly getting cheaper – an individual's genome can now be sequenced in about a week for $5,000," says Ren. "In the not too distant future, everyone's genome will be sequenced. That will become the standard of care." But, he explains, "There has been a problem with this scenario." Except for the sex chromosomes, everyone has two copies of each chromosome. One copy comes from mom, and the other from dad. Current techniques cannot distinguish between the two copies of each gene and, therefore, are not very good at determining whether particular genetic differences, such as a single-letter change in the DNA, originate with an individual's mother or father – muddying genetic analyses.

Ren's new technique, a mixture of molecular biology and computational biology approaches, bypasses this problem. The method enables researchers to quickly determine which genetic variants occur together on the same stretch of chromosome and, therefore, came from the same parent. "This advance has direct implications for the utility of genomics in clinical practice and will also have profound effects on genetic research and discovery," says Ludwig scientist Siddarth Selvaraj, who contributed to the study with Ren and fellow Ludwig researcher Jesse Dixon.

More immediately, the technique will enable clinicians to better assess a person's individual risk for disease, a cornerstone of personalized medicine. For instance, people at risk for a disease such as cancer often have more than one DNA mutation. HaploSeq could enable clinicians to determine if the two mutations are on the same chromosome or on different chromosomes, which can help in risk assessment – for instance, risk may be reduced if two mutations are on the same chromosome, since the 'good' chromosome can often compensate.

Similarly, the method, with further honing, has the potential to refine the currently cumbersome process of determining whether there is a genetic match between an organ donor and recipient. A large number of genes contribute to compatibility between donor and recipient, but there is a lot of genetic variability in these genes. The new technique could help determine whether DNA differences between donor and recipient are likely to be a good match. "This will require more study," says Ren, "but by creating a DNA database, it may be possible to more accurately and expediently pair recipients and donors."

The new method will also help researchers analyze human migration and determine ancestry from their DNA sequences. "In principal," says Ren, "you could compare your genetic sequence to your neighbor's and ask if you have any recent ancestors in common. With our technique we can study each individual and how they relate to other individuals. As we accumulate data from many individuals we can more precisely determine their relationships." Such findings will also bolster an ongoing international project to assess worldwide human genetic variation, the HapMap project.

One advantage of the new technique is that it builds on common sequencing technologies and should be easily adapted for use by clinicians and researchers alike. Says Ren, "I anticipate that this new method will be quite widely used."

This study was funded by the Ludwig Institute for Cancer Research and the Roadmap Epigenome Project (U01 ES017166).

About Ludwig Cancer Research

Ludwig Cancer Research is an international collaborative network of acclaimed scientists with a 40-year legacy of pioneering cancer discoveries. Ludwig combines basic research with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested more than $1.6 billion in life-changing cancer research through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers. http://www.ludwigcancerresearch.org

Bing Ren is a member of the Ludwig Institute for Cancer Research who is based at the University of California, San Diego. More information on the Ren lab can be found here: http://www.ludwigcancerresearch.org/location/san-diego-branch/bing-ren-lab

For further information please contact Rachel Steinhardt, rsteinhardt@licr.org or +1-212-450-1582.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>