Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first DNA barcodes of commonly traded bushmeat are published

08.09.2009
A new tool proved for tracking the global trade in wildlife

Leather handbags and chunks of red meat: when wildlife specialists find these items in shipping containers, luggage, or local markets, they can now use newly published genetic sequences known as "DNA barcodes" to pinpoint the species of origin.

Experts hope that this simple technique will track the harvesting of bushmeat (or wildlife hunted largely in Asia, South and Central America, and Africa) and will ultimately crack down on the widespread and growing international trade in bushmeat, a market estimated to be worth as much as $15 billion in 2008. According to a paper published in the early online edition of Conservation Genetics (DOI 10.1007/s10592-009-9967-0), barcodes can ably and quickly distinguish among a large number of commercially traded species, so that a handbag is identified as caiman or Nile crocodile, and the meat as duiker or mangabey.

"The species in our study are among the most commercially harvested species in South America and Africa. They are often partially prepared by the time they get to urban markets, which can make the species identification impossible," says one of the authors, Mitchell Eaton, who led the research as part of his doctoral research at the University of Colorado. "In this study, we tested the usefulness of molecular barcodes for monitoring bushmeat harvest and trafficking in wildlife products. We have shown that the method effectively and unambiguously identifies a large number of species."

A genetic barcode is a relatively short region of a gene in the mitochondrion, a structure present outside of the nucleus in cells of all multicellular animals. Over the years, scientists have searched for an appropriate region of the genome that mutates quickly enough to distinguish closely related species but also slowly enough so that individuals within a species have similar barcodes. A 645 base pair region of the COX1 gene (cyotochrome c oxidase subunit 1) has been agreed-upon by researchers as appropriate for barcoding, given that it is both highly variable and very specific. Barcoding has been used to distinguish shark species, to check the labeling of caviar and red snapper, and to identify the presence of endangered whales in Asian markets.

"There is consensus on using the same fragment of DNA, COX1, to construct a library of life," says co-author George Amato, Director of the Sackler Institute for Comparative Genomics at the American Museum of Natural History. "This is an example of where new genetic technology can be transformative to society, by using barcodes to catalog the diversity of ecosystems, to monitor invasive species, to search for pathogens in the food supply, and to observe wildlife trafficking for the pet trade and other commercial markets."

In the current study, Eaton, Amato, and colleagues sequenced the barcode region in 204 samples that represent as many as 25 commonly traded mammals and reptiles. Samples came from blood and tissue collected in Central Africa, museum specimens, and leather products confiscated by the U.S. Fish and Wildlife Service. Although not all are currently endangered, many are embargoed from international trade. These species, which include duikers, spiral-horned antelope, red river hogs, old world monkeys, alligators and crocodiles, represent a large swath of some of the more commonly traded animals in tropical Africa and America. Sequences generated from this study will be added to the Barcode of Life Data Systems, an online, open-access database of barcodes.

As expected, the barcode region accurately identified each species; the variability of the genetic region was low within species but differed by an average of 9.8% among closely related species. The findings, however, point to the need for additional genetic research. African Nile crocodile sequences confirmed previous suggestions of an eastern and western species, and this study determined that the species divide lies between sampling sites in Gabon and the Republic of Congo. Peter's duiker, a cryptic forest antelope, revealed a large amount of hidden genetic diversity within what is now considered a single species; more genetic analysis could refine the taxonomy. Finally, generating barcodes from leather products proved challenging due to the degradation of DNA in these processed skins. The authors of this study hope to develop methods to sequence shorter DNA barcode fragments to focus on identification of older and highly processed material.

"We hope biologists all over the world could—in addition to the work they are already doing—generate barcodes for the species they are working on," says Amato. "This would help the huge international endeavor to develop an encyclopedia of barcodes for all species."

In addition to Eaton and Amato, authors include Greta Meyers of Barnard College; Andrew Martin of the University of Colorado; and Sergios-Orestis Kolokotronis and Matthew Leslie of the Sackler Institute for Comparative Genomics at AMNH. The Alfred P. Sloan Foundation and the Richard Lounsbery Foundation supported this research. Additional support for field work in Central Africa came from the Wildlife Conservation Society's Congo and Gabon programs, the National Geographic Society, the Rufford Foundation, the Lincoln Park Zoo's Asia & Africa Fund, and the MacArthur Program of the University of Minnesota. The National Science Foundation and the AMNH's Research Experiences for Undergraduates Program supported a portion of the lab work.

Kristin Elise Phillips | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>