Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first DNA barcodes of commonly traded bushmeat are published

08.09.2009
A new tool proved for tracking the global trade in wildlife

Leather handbags and chunks of red meat: when wildlife specialists find these items in shipping containers, luggage, or local markets, they can now use newly published genetic sequences known as "DNA barcodes" to pinpoint the species of origin.

Experts hope that this simple technique will track the harvesting of bushmeat (or wildlife hunted largely in Asia, South and Central America, and Africa) and will ultimately crack down on the widespread and growing international trade in bushmeat, a market estimated to be worth as much as $15 billion in 2008. According to a paper published in the early online edition of Conservation Genetics (DOI 10.1007/s10592-009-9967-0), barcodes can ably and quickly distinguish among a large number of commercially traded species, so that a handbag is identified as caiman or Nile crocodile, and the meat as duiker or mangabey.

"The species in our study are among the most commercially harvested species in South America and Africa. They are often partially prepared by the time they get to urban markets, which can make the species identification impossible," says one of the authors, Mitchell Eaton, who led the research as part of his doctoral research at the University of Colorado. "In this study, we tested the usefulness of molecular barcodes for monitoring bushmeat harvest and trafficking in wildlife products. We have shown that the method effectively and unambiguously identifies a large number of species."

A genetic barcode is a relatively short region of a gene in the mitochondrion, a structure present outside of the nucleus in cells of all multicellular animals. Over the years, scientists have searched for an appropriate region of the genome that mutates quickly enough to distinguish closely related species but also slowly enough so that individuals within a species have similar barcodes. A 645 base pair region of the COX1 gene (cyotochrome c oxidase subunit 1) has been agreed-upon by researchers as appropriate for barcoding, given that it is both highly variable and very specific. Barcoding has been used to distinguish shark species, to check the labeling of caviar and red snapper, and to identify the presence of endangered whales in Asian markets.

"There is consensus on using the same fragment of DNA, COX1, to construct a library of life," says co-author George Amato, Director of the Sackler Institute for Comparative Genomics at the American Museum of Natural History. "This is an example of where new genetic technology can be transformative to society, by using barcodes to catalog the diversity of ecosystems, to monitor invasive species, to search for pathogens in the food supply, and to observe wildlife trafficking for the pet trade and other commercial markets."

In the current study, Eaton, Amato, and colleagues sequenced the barcode region in 204 samples that represent as many as 25 commonly traded mammals and reptiles. Samples came from blood and tissue collected in Central Africa, museum specimens, and leather products confiscated by the U.S. Fish and Wildlife Service. Although not all are currently endangered, many are embargoed from international trade. These species, which include duikers, spiral-horned antelope, red river hogs, old world monkeys, alligators and crocodiles, represent a large swath of some of the more commonly traded animals in tropical Africa and America. Sequences generated from this study will be added to the Barcode of Life Data Systems, an online, open-access database of barcodes.

As expected, the barcode region accurately identified each species; the variability of the genetic region was low within species but differed by an average of 9.8% among closely related species. The findings, however, point to the need for additional genetic research. African Nile crocodile sequences confirmed previous suggestions of an eastern and western species, and this study determined that the species divide lies between sampling sites in Gabon and the Republic of Congo. Peter's duiker, a cryptic forest antelope, revealed a large amount of hidden genetic diversity within what is now considered a single species; more genetic analysis could refine the taxonomy. Finally, generating barcodes from leather products proved challenging due to the degradation of DNA in these processed skins. The authors of this study hope to develop methods to sequence shorter DNA barcode fragments to focus on identification of older and highly processed material.

"We hope biologists all over the world could—in addition to the work they are already doing—generate barcodes for the species they are working on," says Amato. "This would help the huge international endeavor to develop an encyclopedia of barcodes for all species."

In addition to Eaton and Amato, authors include Greta Meyers of Barnard College; Andrew Martin of the University of Colorado; and Sergios-Orestis Kolokotronis and Matthew Leslie of the Sackler Institute for Comparative Genomics at AMNH. The Alfred P. Sloan Foundation and the Richard Lounsbery Foundation supported this research. Additional support for field work in Central Africa came from the Wildlife Conservation Society's Congo and Gabon programs, the National Geographic Society, the Rufford Foundation, the Lincoln Park Zoo's Asia & Africa Fund, and the MacArthur Program of the University of Minnesota. The National Science Foundation and the AMNH's Research Experiences for Undergraduates Program supported a portion of the lab work.

Kristin Elise Phillips | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>