Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diverse 'connectomes' hint at genes' limits in the nervous system

11.02.2009
Neurons in a small mouse muscle vary markedly in layout and are far longer than expected

Genetics may play a surprisingly small role in determining the precise wiring of the mammalian nervous system, according to painstaking mapping of every neuron projecting to a small muscle mice use to move their ears.

These first-ever mammalian "connectomes," or complete neural circuit diagrams, reveal that neural wiring can vary widely even in paired tissues on the left and right sides of the same animal.

Scientists at Harvard University and the Massachusetts Institute of Technology describe the work this week in the journal PLoS Biology, accompanied by vivid images depicting neurons that are strikingly treelike, but also tremendously varied.

"We had expected to find a great degree of neural symmetry in the same mouse's two interscutularis muscles, but this isn't even close to true," says Jeff W. Lichtman, professor of molecular and cellular biology in Harvard's Faculty of Arts and Sciences.

"It looks like the mammalian nervous system may be a bit like a football game," he adds. "Even when the rules are the same, every single outcome is unique."

Curiously, the connectome of the mouse interscutularis -- a muscle also found in dogs, rats, and other mammals that readily move their ears -- reveals that some of its neurons are as much as 25 percent longer than is necessary. This casts doubt on a longstanding assumption among neuroscientists that neural wiring length is generally minimized to conserve space, energy, and resources.

"This well-known hypothesis that wiring length should be minimized has been in the scientific literature for decades," says Ju Lu, a postdoctoral researcher in molecular and cellular biology at Harvard. "It's very surprising, frankly, to find so much excess wiring in the mammalian nervous system."

Lichtman and Lu's work represents only the second connectome to date, following one for the worm Caenorhabditis elegans. While their task initially appeared manageable -- the entire interscutularis muscle is but a few millimeters in length -- teasing out the muscle's tangle of about 15 intricately branched and intertwined axons proved fiendishly complex.

"It's a bit like taking a giant plate of spaghetti and, without unraveling it, trying to figure out which strand goes where," says Lu. "Except in this case, each strand of spaghetti has up to 37 branches."

Working with mice containing a gene that causes motor neurons to fluoresce, Lichtman and Lu used an automated microscope to gather tens of thousands of images. These images were analyzed with semi-automated tracing tools, although the need for frequent corrections and manual editing by Lu slowed the pace of the mapping to a scant half-millimeter per hour.

Connectomes from a mouse's two interscutularis muscles depict dramatically different neural circuitry even within mirror-image tissues from the same animal.

"Comparison of each neuron and its counterpart on the opposite side of the animal revealed that each connectome was unique," Lichtman says, "demonstrating wiring diagrams that differ substantially in form, even within a common genetic background."

Lichtman says the research suggests the mammalian nervous system is in some ways unexpectedly primitive, its freeform structure lacking the regimentation seen in insects and worms. But, he adds, this seeming randomness may be advantageous.

"This may explain why humans and other mammals can quickly adapt their behaviors to a changing environment," Lichtman says. "We may be less perfected in our genetic evolution, but our flexible neural wiring may allow us to undergo behavioral evolution at a very rapid rate."

Such variation in the nervous system, he adds, could help explain why different humans, each equipped with the same neural building blocks, excel at tasks ranging from dancing to mathematical computations, and from crossword puzzles to bowling.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>