Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diseases of Another Kind

24.07.2014

In a new paper, UCSB researchers scrutinize a distinctive and prevalent type of infectious agent

The drought that has the entire country in its grip is affecting more than the color of people’s lawns. It may also be responsible for the proliferation of a heat-loving amoeba commonly found in warm freshwater bodies, such as lakes, rivers and hot springs, which the drought has made warmer than usual this year.

Legionella pneumophila

Legionella pneumophila, the bacteria responsible for Legionnaires' disease.

Photo Credit: iStock

A 9-year-old Kansas girl recently died of an infection caused by this parasite after swimming in several area lakes. The amoeba enters the body through the nose of an individual and travels to the brain. Nose plugs can lower the odds of this rare but fatal pathogen entering the body.

The amoeba, Naegleria fowleri, is classified as a sapronosis, an infectious disease caused by pathogenic microorganisms that inhabit aquatic ecosystems and/or soil rather than a living host. Scientists at UC Santa Barbara studying infectious disease transmission published their findings in the latest issue of the journal Trends in Parasitology.

 “Sapronoses do not follow the rules of infectious diseases that are transmitted from host to host,” said lead author Armand Kuris, a professor in UCSB’s Department of Ecology, Evolution and Marine Biology (EEMB). “They are categorically distinct from the way we think infectious diseases should operate. The paper tries to bring this group of diseases into sharp focus and get people to think more clearly about them.”

A well-known example of a sapronosis is Legionnaires’ disease, caused by the bacteria Legionella pneumophila, which can be transmitted by aerosolized water and/or contaminated soil. The bacteria can even live in windshield-wiper fluid. Legionnaires’ disease acquired its name in July 1976, when an outbreak of pneumonia occurred among people attending an American Legion convention at the Bellevue-Stratford Hotel in Philadelphia. Of the 182 reported cases, mostly men, 29 died.

A major group of emerging diseases, sapronotic pathogens can exist independently in an environmental reservoir like the cooling tower of the Philadelphia hotel’s air conditioning system. Some, like the cholera protozoa, rely on mosquitoes to find disease hosts for them. Zoonoses, by contrast, require a human host.

According to Kuris, diseases borne by a vector — a person, animal or microorganism that carries and transmits an infectious pathogen into another living organism — are more or less virulent depending on how efficiently they are transmitted. As a result, virulence evolves to a level where it is balanced with transmission in order to maximize the spread of the virus.  However, Kuris noted that there is no virulence trade-off for sapronotic disease agents. Transmission of a sapronosis pathogen is able to persist regardless of any changes in host abundance or transmission rates.

 To quantify the differences between sapronoses and conventional infectious diseases, the researchers developed a mathematical model using population growth rates. Of the 150 randomly selected human pathogens examined in this research, one-third turned out to be sapronotic — specifically 28.6 percent of the bacteria, 96.8 percent of the fungi and 12.5 percent of the protozoa.

“The fact that almost all of the fungi we looked at are sapronotic is a noteworthy generalization,” Kuris said.

“You can’t model a sapronosis like valley fever with classic models for infectious diseases,” said co-author Kevin Lafferty, adjunct faculty in EEMB and a marine ecologist with the Western Ecological Research Center of the U.S. Geological Survey. “To combat sapronoses, we need new theories and approaches. Our paper is a start in that direction.”

Julie Cohen | Eurek Alert!
Further information:
http://www.news.ucsb.edu/2014/014332/diseases-another-kind

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>