Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diseases of Another Kind

24.07.2014

In a new paper, UCSB researchers scrutinize a distinctive and prevalent type of infectious agent

The drought that has the entire country in its grip is affecting more than the color of people’s lawns. It may also be responsible for the proliferation of a heat-loving amoeba commonly found in warm freshwater bodies, such as lakes, rivers and hot springs, which the drought has made warmer than usual this year.

Legionella pneumophila

Legionella pneumophila, the bacteria responsible for Legionnaires' disease.

Photo Credit: iStock

A 9-year-old Kansas girl recently died of an infection caused by this parasite after swimming in several area lakes. The amoeba enters the body through the nose of an individual and travels to the brain. Nose plugs can lower the odds of this rare but fatal pathogen entering the body.

The amoeba, Naegleria fowleri, is classified as a sapronosis, an infectious disease caused by pathogenic microorganisms that inhabit aquatic ecosystems and/or soil rather than a living host. Scientists at UC Santa Barbara studying infectious disease transmission published their findings in the latest issue of the journal Trends in Parasitology.

 “Sapronoses do not follow the rules of infectious diseases that are transmitted from host to host,” said lead author Armand Kuris, a professor in UCSB’s Department of Ecology, Evolution and Marine Biology (EEMB). “They are categorically distinct from the way we think infectious diseases should operate. The paper tries to bring this group of diseases into sharp focus and get people to think more clearly about them.”

A well-known example of a sapronosis is Legionnaires’ disease, caused by the bacteria Legionella pneumophila, which can be transmitted by aerosolized water and/or contaminated soil. The bacteria can even live in windshield-wiper fluid. Legionnaires’ disease acquired its name in July 1976, when an outbreak of pneumonia occurred among people attending an American Legion convention at the Bellevue-Stratford Hotel in Philadelphia. Of the 182 reported cases, mostly men, 29 died.

A major group of emerging diseases, sapronotic pathogens can exist independently in an environmental reservoir like the cooling tower of the Philadelphia hotel’s air conditioning system. Some, like the cholera protozoa, rely on mosquitoes to find disease hosts for them. Zoonoses, by contrast, require a human host.

According to Kuris, diseases borne by a vector — a person, animal or microorganism that carries and transmits an infectious pathogen into another living organism — are more or less virulent depending on how efficiently they are transmitted. As a result, virulence evolves to a level where it is balanced with transmission in order to maximize the spread of the virus.  However, Kuris noted that there is no virulence trade-off for sapronotic disease agents. Transmission of a sapronosis pathogen is able to persist regardless of any changes in host abundance or transmission rates.

 To quantify the differences between sapronoses and conventional infectious diseases, the researchers developed a mathematical model using population growth rates. Of the 150 randomly selected human pathogens examined in this research, one-third turned out to be sapronotic — specifically 28.6 percent of the bacteria, 96.8 percent of the fungi and 12.5 percent of the protozoa.

“The fact that almost all of the fungi we looked at are sapronotic is a noteworthy generalization,” Kuris said.

“You can’t model a sapronosis like valley fever with classic models for infectious diseases,” said co-author Kevin Lafferty, adjunct faculty in EEMB and a marine ecologist with the Western Ecological Research Center of the U.S. Geological Survey. “To combat sapronoses, we need new theories and approaches. Our paper is a start in that direction.”

Julie Cohen | Eurek Alert!
Further information:
http://www.news.ucsb.edu/2014/014332/diseases-another-kind

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>