Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Plant Proteins May Boost Agricultural Yields and Biofuel Production

15.05.2012
Scientists at the Salk Institute for Biological Studies and Iowa State University discovered a family of plant proteins that play a role in the production of seed oils, substances important for animal and human nutrition, biorenewable chemicals and biofuels.
Scoring a rare scientific hat trick, the researchers identified
three related proteins in thale cress plants (Arabidopsis thaliana) that regulate the metabolism of fatty acids, chemical components of all cell membranes and vegetable oils. They dubbed these fatty-acid binding proteins FAP1, FAP2 and FAP3.

The findings, reported May 13 in Nature, may lead to the development of improved crops yielding higher qualities and quantities of oils, helping to address growing demands for food and fuel and the consequent environmental pressures on the world's ecosystems.

"This work has major implications for modulating the fatty acid profiles of plants, which is terribly important, not only to sustainable food production and nutrition but now to biorenewable chemicals and fuels," says Joseph Noel, director of Salk's Jack H. Skirball Center for Chemical Biology and Proteomics and a Howard Hughes Medical Institute (HHMI) investigator, who led the multidisciplinary study together with Eve Syrkin Wurtele, professor of Genetics, Development and Cell Biology at the Plant Research Institute at Iowa State.

"Because very high-energy molecules such as fatty acids are created in the plant by solar energy," says Wurtele, "these types of molecules may ultimately provide the most efficient sources for biorenewable products."

Plant oils are composed primarily of triglycerides, formed by linking together three fatty acid molecules, and are stored mostly in seeds, where they are used for energy during germination. Seeds are crucial sources of oils for nutrition, flavoring and industrial applications, such as the manufacture of soap and cosmetics and for biofuels. With growing concerns about global climate change and petroleum security, producing biofuels for use in transportation and energy generation is a burgeoning industry.

To help address this demand, scientists are unlocking the molecular pathways involved in seed oil metabolism in hopes of finding ways to boost capacity and quality.

In their study, Noel and his collaborators identified three promising genes through analysis of plant genomic data, and then used a variety of techniques, including protein x-ray crystallography, computational biology, biochemistry, mutant plant analysis, metabolomics and gene expression profiling, to functionally characterize the proteins these genes produce.

They found that the proteins, FAP1, FAP2 and FAP3, bind fatty acids, including the major plant omega-3 fatty acid, an important nutritional component found in certain seeds. "They say a picture is worth a thousand words, and that is certainly the case for these FAPs," says Gordon Louie, an HHMI researcher in Noel's laboratory, who determined the three-dimensional arrangement of the FAPs holding on to their fatty acid cargo.

The proteins were found in the chloroplasts, the site of fatty acid production and photosynthesis. This suggested that these proteins play a role in the metabolism of fatty acids and thus in the production of fatty acids for plant membranes and oils.

This hypothesis was reinforced by showing that the FAP genes are most active in developing seeds, appearing at the same time and location as well-known enzymes involved in fatty acid synthesis. The researchers also found that altering the expression of these genes in a plant leads to changes in the quality and amounts of fatty acids.

"The proteins appear to be crucial missing links in the metabolism of fatty acids in Arabidopsis, and likely serve a similar function in other plant species since we find the same genes spread throughout the plant kingdom," says Ryan Philippe, a postdoctoral researcher in Noel's lab.

Micheline Ngaki, a graduate student in Wurtele's lab, says that if the researchers can understand precisely what role the proteins play in seed oil production, they might be able to modify the proteins' activity in new plant strains to produce more oil or higher quality oil than current crops.

The researchers' findings also have implications for evolutionary biology and how large and essential families of enzymes arise from nonenzymatic cousins and are then perfected by evolution.

The ancient ancestors of the proteins the research teams discovered evolved into the enzyme chalcone isomerase, which plays a key role in the production of a group of polyphenols known as flavonoids, compounds that serve a number of functions in plants and are critical for disease prevention in human diets.

"One function of flavonoids is to protect plants from sunlight, which would have been key when plants first emerged from the oceans and lakes to colonize land," says Noel. "We've shown that the very ancient FAP proteins still found in algae and other non-plant organisms acquired chalcone isomerase activity hundreds of millions of years ago, allowing land plants to produce flavonoids for survival in the absence of the protective environment of water."

The discovery may also help bioengineers focused on creating new enzymes for industrial uses by revealing how nature evolves proteins into chemical machines known as enzymes.

"Nature has been perfecting enzymes for at least three billion years because they carry out the hundreds of thousands of chemical reactions in all organisms, and these reactions are needed by us all to survive and prosper," says Noel. "We could learn a lot by understanding that three-billion year old experiment."

Other collaborators on the study include, Ling Li, adjunct professor in the Department of Genetics Development and Cell Biology at Iowa State; Gerard Manning, director of Salk's Razavi Newman Center for Bioinformatics; and Marianne Bowman, Florence Pojer and Elise Larsen, HHMI researchers in Salk's Jack H. Skirball Center for Chemical Biology and Proteomics.
The National Science Foundation, National Cancer Institute and HHMI funded the research.

Image: Courtesy of Eve Syrkin Wurtele, Iowa State
The researchers identified three proteins involved in seed oil production in thale cress plants. This thale cress seedling is shown producing one of the proteins, evidenced by the blue stain on its stems and leaves

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Andy Hoang | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>