Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Plant Proteins May Boost Agricultural Yields and Biofuel Production

15.05.2012
Scientists at the Salk Institute for Biological Studies and Iowa State University discovered a family of plant proteins that play a role in the production of seed oils, substances important for animal and human nutrition, biorenewable chemicals and biofuels.
Scoring a rare scientific hat trick, the researchers identified
three related proteins in thale cress plants (Arabidopsis thaliana) that regulate the metabolism of fatty acids, chemical components of all cell membranes and vegetable oils. They dubbed these fatty-acid binding proteins FAP1, FAP2 and FAP3.

The findings, reported May 13 in Nature, may lead to the development of improved crops yielding higher qualities and quantities of oils, helping to address growing demands for food and fuel and the consequent environmental pressures on the world's ecosystems.

"This work has major implications for modulating the fatty acid profiles of plants, which is terribly important, not only to sustainable food production and nutrition but now to biorenewable chemicals and fuels," says Joseph Noel, director of Salk's Jack H. Skirball Center for Chemical Biology and Proteomics and a Howard Hughes Medical Institute (HHMI) investigator, who led the multidisciplinary study together with Eve Syrkin Wurtele, professor of Genetics, Development and Cell Biology at the Plant Research Institute at Iowa State.

"Because very high-energy molecules such as fatty acids are created in the plant by solar energy," says Wurtele, "these types of molecules may ultimately provide the most efficient sources for biorenewable products."

Plant oils are composed primarily of triglycerides, formed by linking together three fatty acid molecules, and are stored mostly in seeds, where they are used for energy during germination. Seeds are crucial sources of oils for nutrition, flavoring and industrial applications, such as the manufacture of soap and cosmetics and for biofuels. With growing concerns about global climate change and petroleum security, producing biofuels for use in transportation and energy generation is a burgeoning industry.

To help address this demand, scientists are unlocking the molecular pathways involved in seed oil metabolism in hopes of finding ways to boost capacity and quality.

In their study, Noel and his collaborators identified three promising genes through analysis of plant genomic data, and then used a variety of techniques, including protein x-ray crystallography, computational biology, biochemistry, mutant plant analysis, metabolomics and gene expression profiling, to functionally characterize the proteins these genes produce.

They found that the proteins, FAP1, FAP2 and FAP3, bind fatty acids, including the major plant omega-3 fatty acid, an important nutritional component found in certain seeds. "They say a picture is worth a thousand words, and that is certainly the case for these FAPs," says Gordon Louie, an HHMI researcher in Noel's laboratory, who determined the three-dimensional arrangement of the FAPs holding on to their fatty acid cargo.

The proteins were found in the chloroplasts, the site of fatty acid production and photosynthesis. This suggested that these proteins play a role in the metabolism of fatty acids and thus in the production of fatty acids for plant membranes and oils.

This hypothesis was reinforced by showing that the FAP genes are most active in developing seeds, appearing at the same time and location as well-known enzymes involved in fatty acid synthesis. The researchers also found that altering the expression of these genes in a plant leads to changes in the quality and amounts of fatty acids.

"The proteins appear to be crucial missing links in the metabolism of fatty acids in Arabidopsis, and likely serve a similar function in other plant species since we find the same genes spread throughout the plant kingdom," says Ryan Philippe, a postdoctoral researcher in Noel's lab.

Micheline Ngaki, a graduate student in Wurtele's lab, says that if the researchers can understand precisely what role the proteins play in seed oil production, they might be able to modify the proteins' activity in new plant strains to produce more oil or higher quality oil than current crops.

The researchers' findings also have implications for evolutionary biology and how large and essential families of enzymes arise from nonenzymatic cousins and are then perfected by evolution.

The ancient ancestors of the proteins the research teams discovered evolved into the enzyme chalcone isomerase, which plays a key role in the production of a group of polyphenols known as flavonoids, compounds that serve a number of functions in plants and are critical for disease prevention in human diets.

"One function of flavonoids is to protect plants from sunlight, which would have been key when plants first emerged from the oceans and lakes to colonize land," says Noel. "We've shown that the very ancient FAP proteins still found in algae and other non-plant organisms acquired chalcone isomerase activity hundreds of millions of years ago, allowing land plants to produce flavonoids for survival in the absence of the protective environment of water."

The discovery may also help bioengineers focused on creating new enzymes for industrial uses by revealing how nature evolves proteins into chemical machines known as enzymes.

"Nature has been perfecting enzymes for at least three billion years because they carry out the hundreds of thousands of chemical reactions in all organisms, and these reactions are needed by us all to survive and prosper," says Noel. "We could learn a lot by understanding that three-billion year old experiment."

Other collaborators on the study include, Ling Li, adjunct professor in the Department of Genetics Development and Cell Biology at Iowa State; Gerard Manning, director of Salk's Razavi Newman Center for Bioinformatics; and Marianne Bowman, Florence Pojer and Elise Larsen, HHMI researchers in Salk's Jack H. Skirball Center for Chemical Biology and Proteomics.
The National Science Foundation, National Cancer Institute and HHMI funded the research.

Image: Courtesy of Eve Syrkin Wurtele, Iowa State
The researchers identified three proteins involved in seed oil production in thale cress plants. This thale cress seedling is shown producing one of the proteins, evidenced by the blue stain on its stems and leaves

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Andy Hoang | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>