Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Provides New Perspective on Animal Evolution

05.12.2008
A new discovery challenges one of the strongest arguments in favor of the idea that animals with bilateral symmetry—those, that like us have two halves that are roughly mirror images of each other—existed before their obvious appearance in the fossil record during the early Cambrian, some 542 million years ago. Groove-like tracks on the ocean floor made by giant deep-sea single-celled organisms could lead to new insights into the evolutionary origin of animals.

Groove-like tracks on the ocean floor made by giant deep-sea single-celled organisms could lead to new insights into the evolutionary origin of animals.

Biologist Mikhail “Misha” Matz from The University of Texas at Austin and his colleagues, including Dr. Tamara Frank with the Center for Ocean Exploration and Deep-Sea Research, Harbor Branch Oceanographic Institute (HBOI) at Florida Atlantic University, recently discovered grape-sized protists and their complex tracks on the ocean floor near the Bahamas. This is the first time a single-celled organism has been shown to make such animal-like traces. The team’s discovery was recently published online in Current Biology and will also appear in the journal’s December 9 print issue.

The finding is significant, because similar fossil grooves and furrows found from the Precambrian era, as early as 1.8 billion years ago, have always been attributed to early evolving multi-cellular animals.“If our giant protists were alive 600 million years ago and the track was fossilized, a paleontologist unearthing it today would without a shade of doubt attribute it to a kind of large, multi-cellular, bilaterally symmetrical animal,” said Matz, an assistant professor of integrative biology. “We now have to rethink the fossil record.”

The National Oceanographic and Atmospheric Administration’s (NOAA) Office of Ocean Exploration and Research provided several years of significant interdisciplinary funding to the research group involved in this discovery (Operation Deep-Scope 2004, 2005, 2007). The NOAA program provided funds for the scientists to explore unknown or little studied regions of the deep-sea floor using HBOI’s Johnson-Sea-Link (JSL) submersible. The JSL provided a nearly 180 degree unimpeded field of view making it possible for the scientists to see the vast field of “grapes” and their tracks during this expedition.

“The unique collecting tools available on the Johnson-Sea-Link allowed us to gather intact specimens from the sea floor at a depth of 750 meters so that Mikhail could analyze them in his laboratory,” said Frank. “It was a ‘eureka’ moment when he realized that these specimens were giant mobile protists and not fecal pellets as we originally suspected.”

Most animals, from humans to insects, are bilaterally symmetrical, meaning that they can be roughly divided into halves that are mirror images. The bilateral animals, or “Bilateria,” appeared in the fossil record in the early Cambrian about 542 million years ago, quickly diversifying into all of the major animal groups, or phyla, still alive today. This rapid diversification, known as the Cambrian explosion, puzzled Charles Darwin and remains one of the biggest questions in animal evolution to this day. Very few fossils exist of organisms that could be the Precambrian ancestors of bilateral animals, and even those are highly controversial. Fossil traces are the most accepted evidence of the existence of these proto-animals.

“We used to think that it takes bilateral symmetry to move in one direction across the seafloor and thereby leave a track,” said Matz. “You have to have a belly and a backside and a front and back end. Now, we show that protists can leave traces of comparable complexity and with a very similar profile.”

With their find, Matz, Frank and their colleagues argue that fossil traces cannot be used alone as evidence that multi-cellular animals were evolving during the Precambrian, slowly setting the stage for the Cambrian explosion. “I personally think now that the whole Precambrian may have been exclusively the reign of protists,” said Matz. “Our observations open up this possible way of interpreting the Precambrian fossil record.”

Matz says the appearance of all the animal body plans during the Cambrian explosion might not just be an artifact of the fossil record. There are likely other mechanisms that explain the burst-like origin of diverse multi-cellular life forms. DNA analysis confirmed that the giant protist found by Matz and his colleagues in the Bahamas is Gromia sphaerica, a species previously known only from the Arabian Sea.

They did not observe the giant protists in action, and Matz says they likely move very slowly. The sediments on the ocean floor at their particular location are very stable and there are no current—perfect conditions for the preservation of tracks. Matz says the protists probably move by sending leg-like extensions, called pseudopodia, out of their cells in all directions. The pseudopodia then grab onto mud in one direction and the organism rolls that way, leaving a track. He aims to return to the location in the future to observe their movement and investigate other tracks in the area.

Matz says the giant protists’ bubble-like body design is probably one of the planet’s oldest macroscopic body designs, which may have existed for 1.8 billion years.

“Our guys may be the ultimate living fossils of the macroscopic world,” he said.

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>