Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Provides New Perspective on Animal Evolution

05.12.2008
A new discovery challenges one of the strongest arguments in favor of the idea that animals with bilateral symmetry—those, that like us have two halves that are roughly mirror images of each other—existed before their obvious appearance in the fossil record during the early Cambrian, some 542 million years ago. Groove-like tracks on the ocean floor made by giant deep-sea single-celled organisms could lead to new insights into the evolutionary origin of animals.

Groove-like tracks on the ocean floor made by giant deep-sea single-celled organisms could lead to new insights into the evolutionary origin of animals.

Biologist Mikhail “Misha” Matz from The University of Texas at Austin and his colleagues, including Dr. Tamara Frank with the Center for Ocean Exploration and Deep-Sea Research, Harbor Branch Oceanographic Institute (HBOI) at Florida Atlantic University, recently discovered grape-sized protists and their complex tracks on the ocean floor near the Bahamas. This is the first time a single-celled organism has been shown to make such animal-like traces. The team’s discovery was recently published online in Current Biology and will also appear in the journal’s December 9 print issue.

The finding is significant, because similar fossil grooves and furrows found from the Precambrian era, as early as 1.8 billion years ago, have always been attributed to early evolving multi-cellular animals.“If our giant protists were alive 600 million years ago and the track was fossilized, a paleontologist unearthing it today would without a shade of doubt attribute it to a kind of large, multi-cellular, bilaterally symmetrical animal,” said Matz, an assistant professor of integrative biology. “We now have to rethink the fossil record.”

The National Oceanographic and Atmospheric Administration’s (NOAA) Office of Ocean Exploration and Research provided several years of significant interdisciplinary funding to the research group involved in this discovery (Operation Deep-Scope 2004, 2005, 2007). The NOAA program provided funds for the scientists to explore unknown or little studied regions of the deep-sea floor using HBOI’s Johnson-Sea-Link (JSL) submersible. The JSL provided a nearly 180 degree unimpeded field of view making it possible for the scientists to see the vast field of “grapes” and their tracks during this expedition.

“The unique collecting tools available on the Johnson-Sea-Link allowed us to gather intact specimens from the sea floor at a depth of 750 meters so that Mikhail could analyze them in his laboratory,” said Frank. “It was a ‘eureka’ moment when he realized that these specimens were giant mobile protists and not fecal pellets as we originally suspected.”

Most animals, from humans to insects, are bilaterally symmetrical, meaning that they can be roughly divided into halves that are mirror images. The bilateral animals, or “Bilateria,” appeared in the fossil record in the early Cambrian about 542 million years ago, quickly diversifying into all of the major animal groups, or phyla, still alive today. This rapid diversification, known as the Cambrian explosion, puzzled Charles Darwin and remains one of the biggest questions in animal evolution to this day. Very few fossils exist of organisms that could be the Precambrian ancestors of bilateral animals, and even those are highly controversial. Fossil traces are the most accepted evidence of the existence of these proto-animals.

“We used to think that it takes bilateral symmetry to move in one direction across the seafloor and thereby leave a track,” said Matz. “You have to have a belly and a backside and a front and back end. Now, we show that protists can leave traces of comparable complexity and with a very similar profile.”

With their find, Matz, Frank and their colleagues argue that fossil traces cannot be used alone as evidence that multi-cellular animals were evolving during the Precambrian, slowly setting the stage for the Cambrian explosion. “I personally think now that the whole Precambrian may have been exclusively the reign of protists,” said Matz. “Our observations open up this possible way of interpreting the Precambrian fossil record.”

Matz says the appearance of all the animal body plans during the Cambrian explosion might not just be an artifact of the fossil record. There are likely other mechanisms that explain the burst-like origin of diverse multi-cellular life forms. DNA analysis confirmed that the giant protist found by Matz and his colleagues in the Bahamas is Gromia sphaerica, a species previously known only from the Arabian Sea.

They did not observe the giant protists in action, and Matz says they likely move very slowly. The sediments on the ocean floor at their particular location are very stable and there are no current—perfect conditions for the preservation of tracks. Matz says the protists probably move by sending leg-like extensions, called pseudopodia, out of their cells in all directions. The pseudopodia then grab onto mud in one direction and the organism rolls that way, leaving a track. He aims to return to the location in the future to observe their movement and investigate other tracks in the area.

Matz says the giant protists’ bubble-like body design is probably one of the planet’s oldest macroscopic body designs, which may have existed for 1.8 billion years.

“Our guys may be the ultimate living fossils of the macroscopic world,” he said.

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>