Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new muscle repair gene

21.11.2011
An international team of researchers from Leeds, London and Berlin has discovered more about the function of muscle stem cells, thanks to next-generation DNA sequencing techniques.

The work, which was co-led from the University of Leeds' School of Medicine and the Charité, Berlin, is published this week in the journal Nature Genetics.

The researchers investigated several families whose children suffered from a progressive muscle disease. The children developed severe weakness of the body's muscles and the diaphragm - the main breathing muscle - making them dependent on a wheelchair and continuous mechanical ventilation. The children also had to be tube-fed because the esophagus - a muscular tube that transports food from the mouth down into the stomach - did not work properly.

Using state-of the-art, next generation DNA sequencing technology, the scientists initially found a defect in the MEGF10 gene for a large family living in the UK. Further work found mutations in families with a similar condition from Europe and Asia.

Their work means that accurate genetic testing and diagnosis will now be possible for this devastating condition.

The MEGF10 gene normally plays an important function in muscle stem cells. These are also called 'satellite cells', because they are attached to the outer surface of the muscle fibres, where they normally remain silent. If a muscle fibre becomes damaged, the satellite cells become active, start to divide and then fuse with the muscle fibre. MEGF10 has an important role in this fusion process because it provides the 'gluey' surface for the attachment of the satellite cell.

Since body muscles make up about 40% of our weight and are the largest organ in the body, the muscles need to be maintained during normal life. MEGF10 also has a role in this regeneration process; failure causes progressive muscle weakness in not only muscles of the body and limbs but also the muscle cells that can be found in the internal organs.

The project's joint directors, Professor Markus Schuelke from the NeuroCure Clinical Research Center and the Department of Neuropediatrics of the Charité, and Professor Colin A. Johnson from the Leeds Institute of Molecular Medicine, University Leeds, emphasized the relevance of the new methods for genomic analysis. They commented: "These methods enable us to sequence hundreds or even thousands of genes at the same time for an affordable price. This enables clinicians and researchers to discover novel genetic defects even in single patients. This is good news for families with unsolved rare genetic disorders. Many affected patients and their parents, who often have a "diagnostic Odyssey" behind them, may now hope that the cause of their disease will be found in the near future."

For more information:

Contact: Paula Gould, University of Leeds Communications & Press Office: Tel 44-113-343-8059, email p.a.gould@leeds.ac.uk

The paper, Logan et al. Mutations in MEGF10, a regulator of satellite cell myogenesis, cause early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD) is published in Nature Genetics 2011 Nov 20, doi: 10.1038/ng.995.

Paula Gould | EurekAlert!
Further information:
http://www.leeds.ac.uk

Further reports about: DNA Discovery Genetics MEGF10 Medicine Nature Genetics Nature Immunology genetic disorder

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>