Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new muscle repair gene

21.11.2011
An international team of researchers from Leeds, London and Berlin has discovered more about the function of muscle stem cells, thanks to next-generation DNA sequencing techniques.

The work, which was co-led from the University of Leeds' School of Medicine and the Charité, Berlin, is published this week in the journal Nature Genetics.

The researchers investigated several families whose children suffered from a progressive muscle disease. The children developed severe weakness of the body's muscles and the diaphragm - the main breathing muscle - making them dependent on a wheelchair and continuous mechanical ventilation. The children also had to be tube-fed because the esophagus - a muscular tube that transports food from the mouth down into the stomach - did not work properly.

Using state-of the-art, next generation DNA sequencing technology, the scientists initially found a defect in the MEGF10 gene for a large family living in the UK. Further work found mutations in families with a similar condition from Europe and Asia.

Their work means that accurate genetic testing and diagnosis will now be possible for this devastating condition.

The MEGF10 gene normally plays an important function in muscle stem cells. These are also called 'satellite cells', because they are attached to the outer surface of the muscle fibres, where they normally remain silent. If a muscle fibre becomes damaged, the satellite cells become active, start to divide and then fuse with the muscle fibre. MEGF10 has an important role in this fusion process because it provides the 'gluey' surface for the attachment of the satellite cell.

Since body muscles make up about 40% of our weight and are the largest organ in the body, the muscles need to be maintained during normal life. MEGF10 also has a role in this regeneration process; failure causes progressive muscle weakness in not only muscles of the body and limbs but also the muscle cells that can be found in the internal organs.

The project's joint directors, Professor Markus Schuelke from the NeuroCure Clinical Research Center and the Department of Neuropediatrics of the Charité, and Professor Colin A. Johnson from the Leeds Institute of Molecular Medicine, University Leeds, emphasized the relevance of the new methods for genomic analysis. They commented: "These methods enable us to sequence hundreds or even thousands of genes at the same time for an affordable price. This enables clinicians and researchers to discover novel genetic defects even in single patients. This is good news for families with unsolved rare genetic disorders. Many affected patients and their parents, who often have a "diagnostic Odyssey" behind them, may now hope that the cause of their disease will be found in the near future."

For more information:

Contact: Paula Gould, University of Leeds Communications & Press Office: Tel 44-113-343-8059, email p.a.gould@leeds.ac.uk

The paper, Logan et al. Mutations in MEGF10, a regulator of satellite cell myogenesis, cause early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD) is published in Nature Genetics 2011 Nov 20, doi: 10.1038/ng.995.

Paula Gould | EurekAlert!
Further information:
http://www.leeds.ac.uk

Further reports about: DNA Discovery Genetics MEGF10 Medicine Nature Genetics Nature Immunology genetic disorder

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>