Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery leads to rapid mouse 'personalized trials' in breast cancer

09.09.2009
One person's breast cancer is not the same as another person's, because the gene mutations differ in each tumor. That makes it difficult to match the best therapy with the individual patient.

Using a finding that the genetic complexity of tumors in mice parallels that in humans, researchers at the Duke University Institute for Genome Sciences and Policy and Duke University Medical Center are starting trial studies in mice, just like human clinical trials, to evaluate whether understanding tumor diversity can improve cancer treatment.

"Giving everyone the same few current treatments doesn't take the very different types of tumors into account," said Joseph Nevins, Ph.D., Barbara Levine University Professor of Breast Cancer Genomics at Duke, who directs the Center for Applied Genomics & Technology at Duke. "It's like trying to treat a virus infection without recognizing that it may be HIV, influenza or cold virus."

For a study appearing this week in the Proceedings of the National Academy of Sciences, Nevins and colleagues painstakingly examined a large number of mouse breast tumors and performed genomic analyses to differentiate the tumors.

"The genetic pathways in the tumors determine the sensitivity to drugs," Nevins said. "We still have so much to learn about this."

All of the mice were bred to have a Myc gene variant that gave them tumors; however, additional gene mutations are acquired that contribute to the development of the tumor, including mutations in the Ras gene and others. The spectrum of tumor variation at the genetic level mimicked the complexity of human cancers.

"If we are going to successfully treat a tumor, we must recognize the extensive heterogeneity of what we call breast cancer and match drugs carefully to the characteristics of that particular tumor," Nevins said. "Today breast tumors may be sorted by whether they are estrogen-sensitive or HER-2 sensitive, but that is about the extent of it. We are performing human trials to look at the underlying biological pathways and examine how best to match therapies with the individual patient. But, these are lengthy studies. Now we can develop new strategies to match a therapy with a mouse tumor subtype and have results in a much shorter period of time."

Nevins and colleagues plan to conduct trials in the mice just as they would in humans: find the tumor, perform a needle biopsy, learn all they can about the tumor, and match it to a drug based on scientific data. The mouse studies don't replace human trials, but they can be an important component of advancing a strategy, Nevins said.

"This work highlights the importance of both biological and computational model systems to unravel the complexities and heterogeneity of human cancer," said Daniel Gallahan, Ph.D., program director for the Integrative Cancer Biology Program at the National Cancer Institute. "This type of analysis can be exploited to better align a therapeutic strategy with an individual's specific cancer."

Running parallel to human trials, the mouse trials will show what works well and what doesn't in the trial methods, data collection, analysis and other aspects of the trials. Researchers can then translate these findings immediately to keep the human clinical trials advancing as effectively as possible.

With so much mouse model research happening around the globe, why weren't these mouse tumor differences noted before? The gene expression analyses performed on mouse tumors simply haven't been large enough, Nevins said.

"We examined a large number, up to 80 samples of mouse tumors. And in the same way that a picture gets clearer when you add more pixels, the information about the tumors became clearer as we examined more samples," he said. "In effect, we went to a higher resolution and could begin to see patterns more clearly."

The study was funded by the National Institutes of Health and the V Foundation for Cancer Research, named in honor of the late North Carolina State basketball coach Jim Valvano.

Other authors include Eran R. Andrechek, Jeffrey T. Chang, Michael L. Gatza, Chaitanya R. Acharya, and Anil Potti of the Duke Institute for Genome Sciences and Policy, and Robert D. Cardiff of the Center for Comparative Medicine at the University of California at Davis.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>