Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Jumping Gene Cluster Tangles Tree of Life

08.02.2011
Since the days of Darwin, the “tree of life” has been the preeminent metaphor for the process of evolution, reflecting the gradual branching and changing of individual species.

The discovery that a large cluster of genes appears to have jumped directly from one species of fungus to another, however, significantly strengthens the argument that a different metaphor, such as a mosaic, may be more appropriate.

“The fungi are telling us something important about evolution … something we didn’t know,” said Antonis Rokas, assistant professor of biological sciences at Vanderbilt. He and research associate Jason Slot reported their discovery in the Jan. 25 issue of the journal Current Biology.

Rokas and Slot discovered that millions of years ago, a cluster of 23 genes jumped from one strain of mold commonly found on starchy foods like bread and potatoes, Aspergillus, to another strain of mold that lives in herbivore dung and specializes in breaking down plant fibers, Podospora.

The findings came as a major surprise, as there are only a handful of cases in recent evolutionary history where this type of gene transfer between organisms, known as horizontal gene transfer, has been reported in complex cells like those found in plants, animals and fungi.

“Because most people didn’t believe that such large gene clusters could be transferred horizontally, they haven’t looked for them and they haven’t been found,” Rokas said.

Rokas and Slot detected the unprecedented gene cluster transfer during a detailed comparison of the entire genomes of nearly 100 species of fungi. The primary goal of their research is to identify the most reliable methods for determining the evolutionary relationships of species of all kinds. In the course of their analysis, they discovered the 23-gene capture.

The jumping gene cluster codes for a toxic compound called sterigmatocystin. Cells produce this type of compound to attack competing organisms or to protect themselves from attacks. As a result, these types of compounds are the source of a number of important drugs, like penicillin and cyclosporin, as well as a number of natural poisons.

“Fungi produce an astonishing variety of drugs and poisons. Our discovery that one of the largest gene clusters responsible for making such a poison moved intact between species suggests that horizontal transfers of wholesale pathways may have contributed significantly to the generation of this diversity,” Rokas said.

In the past, evolutionary research has focused on the passage of genes from parent to child, known as vertical gene transfer. This process, acted out over the eons of geological time, gives rise to the branching structure of the tree of life.

Since the 1980’s, however, evolutionary scientists have become increasingly aware that horizontal or lateral gene transfer also plays a major role in evolution. In vertical gene transfer, all the genetic material in each new species come from a single ancestral species. In horizontal gene transfer, by contrast, species that receive bits of genetic material from its neighbors are directly related to a number of often unrelated species.

Horizontal gene transfer was first discovered in bacteria, and has been recognized as largely responsible for the problem of drug resistance. If one bacterium evolves a method for surviving a drug, this ability can spread rapidly to other unrelated microorganisms via horizontal gene transfer, substantially reducing the drug’s effectiveness.

Though researchers now generally agree that horizontal gene transfer is relatively common among simple organisms like bacteria, they have continued to assume that it remained relatively rare among complex organisms like plants and animals.

“The thinking has been that there is very little horizontal gene transfer among plants and animals except for a few big, ancient events and maybe the occasional transfer of a single gene here or there,” Slot said. “Our discovery suggests that the horizontal transfer of gene clusters may have been a big player not only in the evolution of bacteria but also in more complex organisms.”

This work was supported by funds provided by the Searle Scholars Program and the National Science Foundation.

For more news about Vanderbilt research, visit Research News @ Vanderbilt.

David F. Salisbury | Newswise Science News
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>