Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of insulin switches in pancreas could lead to new diabetes drugs

27.09.2011
Salk researchers identify cellular mechanism in the pancreas that turns on insulin production

Researchers at the Salk Institute have discovered how a hormone turns on a series of molecular switches inside the pancreas that increases production of insulin.

The finding, published today in the Proceedings of the National Academy of Sciences, raises the possibility that new designer drugs might be able to turn on key molecules in this pathway to help the 80 million Americans who have type 2 diabetes or pre-diabetic insulin resistance.

The molecular switches command pancreatic beta islet cells, the cells responsible for insulin, to grow and multiply. Tweaking these cells might offer a solution to type 1 diabetes, the form of diabetes caused by destruction of islet cells, and to type II diabetes, the form caused by insulin resistance.

"By understanding how pancreatic cells can be encouraged to produce insulin in the most efficient way possible, we may be able to manipulate those cells to treat or even prevent diabetes," says the study's lead author, Marc Montminy, a professor in the Clayton Foundation Laboratories for Peptide Biology at Salk.

Such new agents might increase the functioning of beta islet cells even in people who have not developed diabetes.

"The truth is that as we grow older, these islet cells tend to wear out," Montminy says. "The genetic switches just don't get turned on as efficiently as they did when we were younger, even if we don't develop diabetes. It's like using a garage door opener so many times, the battery wears out. We need a way to continually refresh that battery."

Type II diabetes is caused by an inability for insulin to stimulate muscles to take up glucose, a kind of sugar, from the bloodstream after eating. Age is a risk factor for diabetes, as is obesity, genetic predisposition and lack of physical exercise.

Montminy and two researchers in his lab, Sam Van de Velde, a post-doctoral research associate, and Megan F. Hogan, a graduate student, set out to study how glucagon-like peptide-1 (GLP-1), a hormone produced in the gastrointestinal tract, promotes islet cell survival and growth.

The question is important, not only to understanding basic insulin biology, but also because it would help explain how a drug approved to treat diabetes in 2005 actually works.

That drug, exenatide (Byetta), is a synthetic version of extendin-4, a hormone found in the saliva of the Gila monster lizard. Extendin-4 is similar to GLP-1 in humans, but is much longer acting. "The Gila monster hibernates most of its life, feeding only twice a year, so it needs a way of storing food really well, which means its insulin has to be very efficient," says Montminy.

GLP-1 has a very short duration because enzymes in the bloodstream break it down quickly after it activates insulin production, he says. Patients using exenatide, on the other hand, need to inject it only twice a day.

As helpful as that drug is, Montminy reasoned that if he could pinpoint the various switches that GLP-1 turns on to promote insulin secretion, it might be possible to identify drug targets that might be even more efficient for human use than exenatide.

The researchers set out to identify the various players in the molecular pathway that is activated when GLP-1 docks onto its receptor on the surface of islet cells. In his previous work, Montminy had already discovered that one of the first switches activated is CREB, which turns on other genes.

In this study they defined other players "downstream" of CREB — discoveries that turned out to be surprising. Two of the molecules, mTOR and HIF, are heavily implicated in cancer development, Montminy says. For example, mTOR is a critical sensor of energy in cells, and HIF works inside cells to reprogram genes to help cells grow and divide.

"Turning on switches inside a cell is a bit like running a relay race," Montminy says. "GLP-1 activates CREB, which passes the baton to mTOR, and then HIF takes over to help islet cells withstand the stresses that cause wear and tear, such as aging. It stands to reason that mTOR and HIF would be involved in helping islet cells to remain healthy because they are involved in cell growth — in this case, growth of islet cells."

These findings suggest it may be possible to activate these molecular players independently to restore insulin production, Montminy says. A drug could directly activate the HIF switch, for example, bypassing the prior steps in the pathway: GLP-1, CREB and mTOR. That might not only increase production of insulin from existing islet cells, but also promote growth of new islet cells.

The findings have other clinical implications as well. Understanding that mTOR is involved in insulin secretion helps explain why some transplant patients develop diabetes. Rapamycin, a drug often used to prevent organ rejection, suppresses mTOR activity, and so probably undermines insulin production.

Knowing that activating HIF also may help islet cells grow could be useful in efforts to transplant islet cells in patients with type 1 diabetes.

The study was funded by the Juvenile Diabetes Research Foundation, the National Institutes of Health, the Keickhefer Foundation, the Clayton Foundation for Medical Research, the Leona M. and Harry B. Helmsley Charitable Trust and by Charles Brandes.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>