Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of insulin switches in pancreas could lead to new diabetes drugs

27.09.2011
Salk researchers identify cellular mechanism in the pancreas that turns on insulin production

Researchers at the Salk Institute have discovered how a hormone turns on a series of molecular switches inside the pancreas that increases production of insulin.

The finding, published today in the Proceedings of the National Academy of Sciences, raises the possibility that new designer drugs might be able to turn on key molecules in this pathway to help the 80 million Americans who have type 2 diabetes or pre-diabetic insulin resistance.

The molecular switches command pancreatic beta islet cells, the cells responsible for insulin, to grow and multiply. Tweaking these cells might offer a solution to type 1 diabetes, the form of diabetes caused by destruction of islet cells, and to type II diabetes, the form caused by insulin resistance.

"By understanding how pancreatic cells can be encouraged to produce insulin in the most efficient way possible, we may be able to manipulate those cells to treat or even prevent diabetes," says the study's lead author, Marc Montminy, a professor in the Clayton Foundation Laboratories for Peptide Biology at Salk.

Such new agents might increase the functioning of beta islet cells even in people who have not developed diabetes.

"The truth is that as we grow older, these islet cells tend to wear out," Montminy says. "The genetic switches just don't get turned on as efficiently as they did when we were younger, even if we don't develop diabetes. It's like using a garage door opener so many times, the battery wears out. We need a way to continually refresh that battery."

Type II diabetes is caused by an inability for insulin to stimulate muscles to take up glucose, a kind of sugar, from the bloodstream after eating. Age is a risk factor for diabetes, as is obesity, genetic predisposition and lack of physical exercise.

Montminy and two researchers in his lab, Sam Van de Velde, a post-doctoral research associate, and Megan F. Hogan, a graduate student, set out to study how glucagon-like peptide-1 (GLP-1), a hormone produced in the gastrointestinal tract, promotes islet cell survival and growth.

The question is important, not only to understanding basic insulin biology, but also because it would help explain how a drug approved to treat diabetes in 2005 actually works.

That drug, exenatide (Byetta), is a synthetic version of extendin-4, a hormone found in the saliva of the Gila monster lizard. Extendin-4 is similar to GLP-1 in humans, but is much longer acting. "The Gila monster hibernates most of its life, feeding only twice a year, so it needs a way of storing food really well, which means its insulin has to be very efficient," says Montminy.

GLP-1 has a very short duration because enzymes in the bloodstream break it down quickly after it activates insulin production, he says. Patients using exenatide, on the other hand, need to inject it only twice a day.

As helpful as that drug is, Montminy reasoned that if he could pinpoint the various switches that GLP-1 turns on to promote insulin secretion, it might be possible to identify drug targets that might be even more efficient for human use than exenatide.

The researchers set out to identify the various players in the molecular pathway that is activated when GLP-1 docks onto its receptor on the surface of islet cells. In his previous work, Montminy had already discovered that one of the first switches activated is CREB, which turns on other genes.

In this study they defined other players "downstream" of CREB — discoveries that turned out to be surprising. Two of the molecules, mTOR and HIF, are heavily implicated in cancer development, Montminy says. For example, mTOR is a critical sensor of energy in cells, and HIF works inside cells to reprogram genes to help cells grow and divide.

"Turning on switches inside a cell is a bit like running a relay race," Montminy says. "GLP-1 activates CREB, which passes the baton to mTOR, and then HIF takes over to help islet cells withstand the stresses that cause wear and tear, such as aging. It stands to reason that mTOR and HIF would be involved in helping islet cells to remain healthy because they are involved in cell growth — in this case, growth of islet cells."

These findings suggest it may be possible to activate these molecular players independently to restore insulin production, Montminy says. A drug could directly activate the HIF switch, for example, bypassing the prior steps in the pathway: GLP-1, CREB and mTOR. That might not only increase production of insulin from existing islet cells, but also promote growth of new islet cells.

The findings have other clinical implications as well. Understanding that mTOR is involved in insulin secretion helps explain why some transplant patients develop diabetes. Rapamycin, a drug often used to prevent organ rejection, suppresses mTOR activity, and so probably undermines insulin production.

Knowing that activating HIF also may help islet cells grow could be useful in efforts to transplant islet cells in patients with type 1 diabetes.

The study was funded by the Juvenile Diabetes Research Foundation, the National Institutes of Health, the Keickhefer Foundation, the Clayton Foundation for Medical Research, the Leona M. and Harry B. Helmsley Charitable Trust and by Charles Brandes.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>