Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of insulin switches in pancreas could lead to new diabetes drugs

27.09.2011
Salk researchers identify cellular mechanism in the pancreas that turns on insulin production

Researchers at the Salk Institute have discovered how a hormone turns on a series of molecular switches inside the pancreas that increases production of insulin.

The finding, published today in the Proceedings of the National Academy of Sciences, raises the possibility that new designer drugs might be able to turn on key molecules in this pathway to help the 80 million Americans who have type 2 diabetes or pre-diabetic insulin resistance.

The molecular switches command pancreatic beta islet cells, the cells responsible for insulin, to grow and multiply. Tweaking these cells might offer a solution to type 1 diabetes, the form of diabetes caused by destruction of islet cells, and to type II diabetes, the form caused by insulin resistance.

"By understanding how pancreatic cells can be encouraged to produce insulin in the most efficient way possible, we may be able to manipulate those cells to treat or even prevent diabetes," says the study's lead author, Marc Montminy, a professor in the Clayton Foundation Laboratories for Peptide Biology at Salk.

Such new agents might increase the functioning of beta islet cells even in people who have not developed diabetes.

"The truth is that as we grow older, these islet cells tend to wear out," Montminy says. "The genetic switches just don't get turned on as efficiently as they did when we were younger, even if we don't develop diabetes. It's like using a garage door opener so many times, the battery wears out. We need a way to continually refresh that battery."

Type II diabetes is caused by an inability for insulin to stimulate muscles to take up glucose, a kind of sugar, from the bloodstream after eating. Age is a risk factor for diabetes, as is obesity, genetic predisposition and lack of physical exercise.

Montminy and two researchers in his lab, Sam Van de Velde, a post-doctoral research associate, and Megan F. Hogan, a graduate student, set out to study how glucagon-like peptide-1 (GLP-1), a hormone produced in the gastrointestinal tract, promotes islet cell survival and growth.

The question is important, not only to understanding basic insulin biology, but also because it would help explain how a drug approved to treat diabetes in 2005 actually works.

That drug, exenatide (Byetta), is a synthetic version of extendin-4, a hormone found in the saliva of the Gila monster lizard. Extendin-4 is similar to GLP-1 in humans, but is much longer acting. "The Gila monster hibernates most of its life, feeding only twice a year, so it needs a way of storing food really well, which means its insulin has to be very efficient," says Montminy.

GLP-1 has a very short duration because enzymes in the bloodstream break it down quickly after it activates insulin production, he says. Patients using exenatide, on the other hand, need to inject it only twice a day.

As helpful as that drug is, Montminy reasoned that if he could pinpoint the various switches that GLP-1 turns on to promote insulin secretion, it might be possible to identify drug targets that might be even more efficient for human use than exenatide.

The researchers set out to identify the various players in the molecular pathway that is activated when GLP-1 docks onto its receptor on the surface of islet cells. In his previous work, Montminy had already discovered that one of the first switches activated is CREB, which turns on other genes.

In this study they defined other players "downstream" of CREB — discoveries that turned out to be surprising. Two of the molecules, mTOR and HIF, are heavily implicated in cancer development, Montminy says. For example, mTOR is a critical sensor of energy in cells, and HIF works inside cells to reprogram genes to help cells grow and divide.

"Turning on switches inside a cell is a bit like running a relay race," Montminy says. "GLP-1 activates CREB, which passes the baton to mTOR, and then HIF takes over to help islet cells withstand the stresses that cause wear and tear, such as aging. It stands to reason that mTOR and HIF would be involved in helping islet cells to remain healthy because they are involved in cell growth — in this case, growth of islet cells."

These findings suggest it may be possible to activate these molecular players independently to restore insulin production, Montminy says. A drug could directly activate the HIF switch, for example, bypassing the prior steps in the pathway: GLP-1, CREB and mTOR. That might not only increase production of insulin from existing islet cells, but also promote growth of new islet cells.

The findings have other clinical implications as well. Understanding that mTOR is involved in insulin secretion helps explain why some transplant patients develop diabetes. Rapamycin, a drug often used to prevent organ rejection, suppresses mTOR activity, and so probably undermines insulin production.

Knowing that activating HIF also may help islet cells grow could be useful in efforts to transplant islet cells in patients with type 1 diabetes.

The study was funded by the Juvenile Diabetes Research Foundation, the National Institutes of Health, the Keickhefer Foundation, the Clayton Foundation for Medical Research, the Leona M. and Harry B. Helmsley Charitable Trust and by Charles Brandes.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>