Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of genetic mutations better diagnose myelodysplastic syndromes

01.07.2011
Researchers at Brigham and Women's Hospital have developed a means of improving prognosis methods and predicting how long patients with MDS will live after diagnosis by identifying certain gene mutations in their abnormal bone marrow

For patients with myelodysplastic syndromes (MDS), choosing the appropriate treatment depends heavily on the prognosis. Those patients at the highest risk of dying from their disease are typically offered the most aggressive therapies, while patients at lower risk could live several years with MDS, needing only supportive care or other relatively side-effect free treatments.

While some clinical variables are useful, current methods for predicting prognosis for individual patients are not ideal. Patients with the same clinical features can have very different outcomes from their disease. Researchers at Brigham and Women's Hospital (BWH) have developed a means of improving prognosis methods and predicting how long patients with MDS will live after diagnosis by identifying certain gene mutations in their abnormal bone marrow. These findings are published in the June 30 issue of the New England Journal of Medicine.

MDS is a cancer of the bone marrow and blood that can range in severity and likelihood to progress to acute leukemia. For patients with related diseases, such as acute myeloid leukemias or myeloproliferative disorders, single gene mutations are commonly used to make diagnoses, predict outcomes, and track disease burden. "Information about gene mutations is not used clinically at the moment for patients with MDS," noted Benjamin Levine Ebert, MD, PhD, at BWH. "In particular, using these mutations to determine the prognosis of patients can help dictate appropriate treatment for patients based on the current state of the disease."

The researchers used a combination of genomic approaches, including next-generation sequencing and mass spectrometry–based genotyping, to identify mutations in samples of bone marrow from 439 patients with MDS. They then examined whether the mutation status for each gene was associated with clinical variables and overall survival.

Clinicians currently use scoring systems to classify MDS patients into different risk groups based on clinical features of their disease, but mutations in individual genes are not currently used. Some patients currently predicted to have low risk disease progress rapidly. "In this study we identified mutations in several genes that predict a worse prognosis for patients than we would have expected using the most commonly used clinical scoring system (the International Prognostic Scoring System for MDS, or IPSS)," said Dr. Ebert.

Nearly a third of the patients in this study were found to have mutations in one or more of the five prognostic genes identified. If physicians knew that one of their low risk patients had such a mutation, they might decide to offer them more aggressive treatment or monitor them more closely.

Prior studies have suggested that mutations in individual genes can change the predicted prognosis of patients in MDS, but often included only a small number of patients or only considered mutations in a few genes. This study is the first to examine a large number of genes in such a large group of patients, allowing the researchers to determine how frequently mutations in different genes occurred and how often they overlapped with each other. This also allowed them to determine which mutations were the most important independent predictors of prognosis.

Moving forward, researchers hope to identify mutations that predict response to individual therapies. They expect that this genetic information will be used clinically as part of a novel prognostic scoring system and as predictors of therapeutic responses. This will allow us to further individualize the care of patients with MDS.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. BWH is the home of the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), www.brighamandwomens.org/research , BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $537 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information about BWH, please visit www.brighamandwomens.org

Holly Brown-Ayers | EurekAlert!
Further information:
http://www.brighamandwomens.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>