Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of genetic mutations better diagnose myelodysplastic syndromes

01.07.2011
Researchers at Brigham and Women's Hospital have developed a means of improving prognosis methods and predicting how long patients with MDS will live after diagnosis by identifying certain gene mutations in their abnormal bone marrow

For patients with myelodysplastic syndromes (MDS), choosing the appropriate treatment depends heavily on the prognosis. Those patients at the highest risk of dying from their disease are typically offered the most aggressive therapies, while patients at lower risk could live several years with MDS, needing only supportive care or other relatively side-effect free treatments.

While some clinical variables are useful, current methods for predicting prognosis for individual patients are not ideal. Patients with the same clinical features can have very different outcomes from their disease. Researchers at Brigham and Women's Hospital (BWH) have developed a means of improving prognosis methods and predicting how long patients with MDS will live after diagnosis by identifying certain gene mutations in their abnormal bone marrow. These findings are published in the June 30 issue of the New England Journal of Medicine.

MDS is a cancer of the bone marrow and blood that can range in severity and likelihood to progress to acute leukemia. For patients with related diseases, such as acute myeloid leukemias or myeloproliferative disorders, single gene mutations are commonly used to make diagnoses, predict outcomes, and track disease burden. "Information about gene mutations is not used clinically at the moment for patients with MDS," noted Benjamin Levine Ebert, MD, PhD, at BWH. "In particular, using these mutations to determine the prognosis of patients can help dictate appropriate treatment for patients based on the current state of the disease."

The researchers used a combination of genomic approaches, including next-generation sequencing and mass spectrometry–based genotyping, to identify mutations in samples of bone marrow from 439 patients with MDS. They then examined whether the mutation status for each gene was associated with clinical variables and overall survival.

Clinicians currently use scoring systems to classify MDS patients into different risk groups based on clinical features of their disease, but mutations in individual genes are not currently used. Some patients currently predicted to have low risk disease progress rapidly. "In this study we identified mutations in several genes that predict a worse prognosis for patients than we would have expected using the most commonly used clinical scoring system (the International Prognostic Scoring System for MDS, or IPSS)," said Dr. Ebert.

Nearly a third of the patients in this study were found to have mutations in one or more of the five prognostic genes identified. If physicians knew that one of their low risk patients had such a mutation, they might decide to offer them more aggressive treatment or monitor them more closely.

Prior studies have suggested that mutations in individual genes can change the predicted prognosis of patients in MDS, but often included only a small number of patients or only considered mutations in a few genes. This study is the first to examine a large number of genes in such a large group of patients, allowing the researchers to determine how frequently mutations in different genes occurred and how often they overlapped with each other. This also allowed them to determine which mutations were the most important independent predictors of prognosis.

Moving forward, researchers hope to identify mutations that predict response to individual therapies. They expect that this genetic information will be used clinically as part of a novel prognostic scoring system and as predictors of therapeutic responses. This will allow us to further individualize the care of patients with MDS.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. BWH is the home of the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), www.brighamandwomens.org/research , BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $537 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information about BWH, please visit www.brighamandwomens.org

Holly Brown-Ayers | EurekAlert!
Further information:
http://www.brighamandwomens.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>