Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Explains Why Influenza B Virus Exclusively Infects Humans

26.08.2011
Opens Door for Drugs to Fight Seasonal Epidemics Caused by Virus

Rutgers, University of Texas at Austin researchers determine three-dimensional structure of site on influenza B virus protein that suppresses human defenses to infection

Researchers at Rutgers University and the University of Texas at Austin have reported a discovery that could help scientists develop drugs to fight seasonal influenza epidemics caused by the common influenza B strain.

Their discovery also helps explain how influenza B is limited to humans, and why it cannot be as virulent as A strains that incorporate new genes from influenza viruses that infect other species. The devastating flu pandemic of 1918, the pandemics of 1968 and 1977, and the avian influenza that emerged in the middle of the last decade were caused by influenza A viruses. Understanding features of influenza B virus that limit it to humans will help scientists better understand how influenza A strains are able to cross species.

The researchers have determined the three-dimensional structure of a complex between an influenza B virus protein and one of its human protein targets, resulting in suppression of the cell’s natural defenses to the infection and paving the way for the virus to replicate efficiently.

Their findings are detailed in a paper published in the most recent issue of PNAS (Proceedings of the US National Academy of Sciences).

“Our study shows the basis by which non-structural protein 1 of influenza B, or NS1B, binds to a human host protein, immobilizing it to prevent it from fighting the virus,” said Gaetano Montelione, a lead author and professor of biochemistry and molecular biology, School of Arts and Sciences, at Rutgers. That human protein, known as interferon-stimulated gene 15 protein or ISG15, is an essential part of the defense mechanism that human cells use to protect themselves from viral infections. Chemicals that block the binding of NS1B to ISG15 may have antiviral potential against influenza B virus.

The study, led by professors Montelione and Robert Krug at the University of Texas at Austin, also reveals why NS1B cannot bind ISG15 molecules in other species, such as dogs or mice. Only human and non-human primate ISG15 proteins have a unique molecular sequence in a small part of the protein that makes it possible to bind to the NS1B protein. So far, influenza B virus has been found only in humans.

“The three-dimensional structure of the NS1B-ISG15 complex, which we determined using X-ray crystallography, has given us a clear understanding of the molecular basis for this species specificity,” said Krug, professor and chair of molecular genetics and microbiology.

“Flu infections continue to be a major health problem, with more effective drugs critically needed to treat infected individuals and control potential pandemics,” said Aaron Shatkin, director of the Center for Advanced Biotechnology and Medicine (CABM) at Rutgers and an eminent virologist. “This discovery opens new possibilities for achieving these very important goals.”

Participating in the study from Rutgers were Rongjin Guan, Li-Ching Ma and Brendan Amer, who along with Montelione are members of CABM and the Northeast Structural Genomics Consortium. They were joined by Paul Leonard of the Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, who is also a member of CABM and the Howard Hughes Medical Institute. Participating from the University of Texas at Austin were Haripriya Sridharan and Chen Zhao, who along with Krug are also members of the university’s Institute for Cellular and Molecular Biology.

Montelione is the Jerome and Lorraine Aresty Chair in Cancer Research at Rutgers, an endowed chair established to support Montelione’s research efforts in the general area of cancer biology research. Significantly, some of the human proteins that are targets of the influenza virus’s defense mechanisms, like ISG15, are also important in cancer biology. Krug is a Fellow of the Mr. And Mrs. Corbin J. Robertson, Sr. Regents Chair in Molecular Biology at the University of Texas at Austin.

The work was supported by grants from the Protein Structure Initiative (PSI-Biology) Program of the National Institutes of Health and its National Institute of General Medical Sciences, the National Institute of Allergy and Infectious Disease, and the Howard Hughes Medical Institute.

Media Contact: Carl Blesch
732-932-7084, ext. 616
E-mail: cblesch@ur.rutgers.edu
Contact: Lee Clippard
512-232-0675
E-mail: lclippard@mail.utexas.edu

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>