Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of enzyme activation process could lead to new heart attack treatments

11.01.2010
Researchers at the Indiana University and Stanford University schools of medicine have determined how a "chemical chaperone" does its job in the body, which could lead to a new class of drugs to help reduce the muscle damage caused by heart attacks.

Such drugs would work by restoring the activity of a mutated enzyme, rather than taking the more common approach of blocking the actions of a disease-related protein.

The team, led by Thomas Hurley, Ph.D., associate chair and professor of biochemistry and molecular biology at IU, and Daria Mochly-Rosen, Ph.D., professor of chemical and systems biology at Stanford, report in the journal Nature Structural Biology published online Jan. 10 that the compound, called Alda-1, acts much like a shim to prop up a mutated form of a key enzyme, restoring the enzyme's function.

The enzyme, called ALDH2, plays an important role in metabolizing alcohol and other toxins, including those created by a lack of oxygen in the wake of a heart attack. It also is involved in the metabolism of nitroglycerin, which is used to prevent chest pain (angina) caused by restricted blood flow and oxygen to the heart.

However some people, including about 40 percent of people of East Asian descent, carry a mutated form of the ALDH2 enzyme that does not carry out its intended functions well. People with the mutated form of the enzyme are at increased risk of cardiovascular damage.

The IU and Stanford team reported in 2008 in the journal Science that in laboratory tests Alda-1 bypassed the body's usual signaling system and activated the ALDH2 enzyme directly, reducing damage to heart muscle tissue. That finding raised the possibility of new treatments for heart attacks, methods to protect hearts during open heart surgery, organ transplants, stroke and other situations in which blood flow is interrupted.

Their current paper describes how Alda-1 activates the ALDH2 enzyme in a process that Dr. Hurley likens to a woodworking procedure in which Alda-1 attaches to the ALDH2 enzyme at a crucial spot and acts like a shim or wedge to prop it up.

"Because of the mutation in the gene, parts of the protein structure become loose and floppy. Alda-1 reactivates the enzyme by propping up those parts of the structure so they regain normal function," said Dr. Hurley, director of the Center for Structural Biology on the Indiana University-Purdue University Indianapolis campus.

Determining how the Alda-1 compound works will enable the researchers to begin working on alternative compounds that hold more promise as potential drugs. One primary improvement needed is the ability to give the drug orally, rather than by injection, Dr. Hurley said.

"Based on the information from these studies, we're now ready to sit down with medicinal chemists and start designing new analogues by applying our understanding of what we need to leave alone and what we can modify to improve the properties of Alda-1," he said.

He predicted that alternative compounds could be available for testing by mid-2010.

The research was supported by grants from the National Institute of Alcohol Abuse and Alcoholism at the National Institutes of Health.

Eric Schoch | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>