Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery brings hope of new tailor-made anti-cancer agents

22.04.2013
Scientists at the Walter and Eliza Hall Institute and their collaborators have tailor-made a new chemical compound that blocks a protein that has been linked to poor responses to treatment in cancer patients.

The development of the compound, called WEHI-539, is an important step towards the design of a potential new anti-cancer agent. WEHI-539 has been designed to bind and block the function of a protein called BCL-XL that normally prevents cells from dying.

The death and elimination of abnormal cells in the body is an important safeguard against cancer development. But cancer cells often acquire genetic changes that allow them to bypass cell death, which also reduces the effectiveness of anti-cancer treatments such as chemotherapy.

Cancer cells can become long-lived by producing high levels of BCL-XL protein, and high levels of BCL-XL are also associated with poorer outcomes for patients with lung, stomach, colon and pancreatic cancer.

Dr Guillaume Lessene, Professor Keith Watson and Professor David Huang from the institute's ACRF Chemical Biology division, and Dr Peter Czabotar and Professor Peter Colman from the institute's Structural Biology division led the development of WEHI-539 in collaboration with colleagues at Genentech, a member of the Roche group. The research is published online today in the journal Nature Chemical Biology.

Dr Lessene said the development of WEHI-539 was an important milestone on the way to creating potential anti-cancer agents that act to restore cell death by inhibiting BCL-XL. "Although WEHI-539 is not optimised for use in patients, it will be a very valuable tool for researchers to use to dissect how BCL-XL controls cancer cell survival," he said.

WEHI-539 belongs to a class of chemicals called 'BH3-mimetics', which all bind to the same region of BCL-XL or related proteins. Two BH3-mimetics, called navitoclax (ABT-263) and ABT-199/GDC-0199 are currently in clinical trials for the treatment of cancer, particularly those of the blood and lymph glands (leukaemia and lymphoma).

Dr Lessene said WEHI-539 was the product of a sustained research program. "We were very excited to see the team's work culminate in a compound that specifically inhibits BCL-XL," he said. "WEHI-539 is the first compound that our chemists have developed from scratch, using the three-dimensional structure of BCL-XL to build and refine its design."

The research was supported by the Australian Research Council, the National Health and Medical Research Council, the US Leukemia and Lymphoma Society, Cancer Council Victoria, the Australian Cancer Research Foundation and the Victorian Government.

Vanessa Solomon | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Carbonic Acid—And Yet It Exists!
23.09.2014 | Angewandte Chemie International Edition

nachricht A New Strategy to Analyze The Cellular World
23.09.2014 | Exzellenzcluster und DFG-Forschungszentrum Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

17th European Health Forum Gastein: “Electing Health – The Europe We Want”

23.09.2014 | Event News

Future questions regarding data processing

22.09.2014 | Event News

"Start-ups and spin-offs funding – Public and private policies", 14th October 2014

12.09.2014 | Event News

 
Latest News

Lego-like modular components make building 3-D 'labs-on-a-chip' a snap

23.09.2014 | Interdisciplinary Research

Virtual water: Tracking the unseen water in goods and resources

23.09.2014 | Earth Sciences

Carbonic Acid—And Yet It Exists!

23.09.2014 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>