Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery brings hope of new tailor-made anti-cancer agents

Scientists at the Walter and Eliza Hall Institute and their collaborators have tailor-made a new chemical compound that blocks a protein that has been linked to poor responses to treatment in cancer patients.

The development of the compound, called WEHI-539, is an important step towards the design of a potential new anti-cancer agent. WEHI-539 has been designed to bind and block the function of a protein called BCL-XL that normally prevents cells from dying.

The death and elimination of abnormal cells in the body is an important safeguard against cancer development. But cancer cells often acquire genetic changes that allow them to bypass cell death, which also reduces the effectiveness of anti-cancer treatments such as chemotherapy.

Cancer cells can become long-lived by producing high levels of BCL-XL protein, and high levels of BCL-XL are also associated with poorer outcomes for patients with lung, stomach, colon and pancreatic cancer.

Dr Guillaume Lessene, Professor Keith Watson and Professor David Huang from the institute's ACRF Chemical Biology division, and Dr Peter Czabotar and Professor Peter Colman from the institute's Structural Biology division led the development of WEHI-539 in collaboration with colleagues at Genentech, a member of the Roche group. The research is published online today in the journal Nature Chemical Biology.

Dr Lessene said the development of WEHI-539 was an important milestone on the way to creating potential anti-cancer agents that act to restore cell death by inhibiting BCL-XL. "Although WEHI-539 is not optimised for use in patients, it will be a very valuable tool for researchers to use to dissect how BCL-XL controls cancer cell survival," he said.

WEHI-539 belongs to a class of chemicals called 'BH3-mimetics', which all bind to the same region of BCL-XL or related proteins. Two BH3-mimetics, called navitoclax (ABT-263) and ABT-199/GDC-0199 are currently in clinical trials for the treatment of cancer, particularly those of the blood and lymph glands (leukaemia and lymphoma).

Dr Lessene said WEHI-539 was the product of a sustained research program. "We were very excited to see the team's work culminate in a compound that specifically inhibits BCL-XL," he said. "WEHI-539 is the first compound that our chemists have developed from scratch, using the three-dimensional structure of BCL-XL to build and refine its design."

The research was supported by the Australian Research Council, the National Health and Medical Research Council, the US Leukemia and Lymphoma Society, Cancer Council Victoria, the Australian Cancer Research Foundation and the Victorian Government.

Vanessa Solomon | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht High-arctic butterflies shrink with rising temperatures
07.10.2015 | Aarhus University

nachricht Long-term contraception in a single shot
07.10.2015 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>