Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery brings hope of new tailor-made anti-cancer agents

22.04.2013
Scientists at the Walter and Eliza Hall Institute and their collaborators have tailor-made a new chemical compound that blocks a protein that has been linked to poor responses to treatment in cancer patients.

The development of the compound, called WEHI-539, is an important step towards the design of a potential new anti-cancer agent. WEHI-539 has been designed to bind and block the function of a protein called BCL-XL that normally prevents cells from dying.

The death and elimination of abnormal cells in the body is an important safeguard against cancer development. But cancer cells often acquire genetic changes that allow them to bypass cell death, which also reduces the effectiveness of anti-cancer treatments such as chemotherapy.

Cancer cells can become long-lived by producing high levels of BCL-XL protein, and high levels of BCL-XL are also associated with poorer outcomes for patients with lung, stomach, colon and pancreatic cancer.

Dr Guillaume Lessene, Professor Keith Watson and Professor David Huang from the institute's ACRF Chemical Biology division, and Dr Peter Czabotar and Professor Peter Colman from the institute's Structural Biology division led the development of WEHI-539 in collaboration with colleagues at Genentech, a member of the Roche group. The research is published online today in the journal Nature Chemical Biology.

Dr Lessene said the development of WEHI-539 was an important milestone on the way to creating potential anti-cancer agents that act to restore cell death by inhibiting BCL-XL. "Although WEHI-539 is not optimised for use in patients, it will be a very valuable tool for researchers to use to dissect how BCL-XL controls cancer cell survival," he said.

WEHI-539 belongs to a class of chemicals called 'BH3-mimetics', which all bind to the same region of BCL-XL or related proteins. Two BH3-mimetics, called navitoclax (ABT-263) and ABT-199/GDC-0199 are currently in clinical trials for the treatment of cancer, particularly those of the blood and lymph glands (leukaemia and lymphoma).

Dr Lessene said WEHI-539 was the product of a sustained research program. "We were very excited to see the team's work culminate in a compound that specifically inhibits BCL-XL," he said. "WEHI-539 is the first compound that our chemists have developed from scratch, using the three-dimensional structure of BCL-XL to build and refine its design."

The research was supported by the Australian Research Council, the National Health and Medical Research Council, the US Leukemia and Lymphoma Society, Cancer Council Victoria, the Australian Cancer Research Foundation and the Victorian Government.

Vanessa Solomon | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>