Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery to aid study of biological structures, molecules

13.08.2009
Researchers in the United States and Spain have discovered that a tool widely used in nanoscale imaging works differently in watery environments, a step toward better using the instrument to study biological molecules and structures.

The researchers demonstrated their new understanding of how the instrument - the atomic force microscope - works in water to show detailed properties of a bacterial membrane and a virus called Phi29, said Arvind Raman, a Purdue professor of mechanical engineering.

"People using this kind of instrument to study biological structures need to know how it works in the natural watery environments of molecules and how to interpret images," he said.

An atomic force microscope uses a tiny vibrating probe to yield information about materials and surfaces on the scale of nanometers, or billionths of a meter. Because the instrument enables scientists to "see" objects far smaller than possible using light microscopes, it could be ideal for studying molecules, cell membranes and other biological structures.

The best way to study such structures is in their wet, natural environments. However, the researchers have now discovered that in some respects the vibrating probe's tip behaves the opposite in water as it does in air, said Purdue mechanical engineering doctoral student John Melcher.

Purdue researchers collaborated with scientists at three institutions in Madrid, Spain: Universidad Autónoma de Madrid, Instituto de Ciencia de Materiales de Madrid and the Centro Nacional de Biotecnología.

Findings, which were detailed in a paper appearing online last week in the U.S. publication Proceedings of the National Academy of Sciences, are related to the subtle differences in how the instrument's probe vibrates. The probe is caused to oscillate by a vibrating source at its base. However, the tip of the probe oscillates slightly out of synch with the oscillations at the base. This difference in oscillation is referred to as a "phase contrast," and the tip is said to be out of phase with the base.

Although these differences in phase contrast reveal information about the composition of the material being studied, data can't be properly interpreted unless researchers understand precisely how the phase changes in water as well as in air, Raman said.

If the instrument is operating in air, the tip's phase lags slightly when interacting with a viscous material and advances slightly when scanning over a hard surface. Now researchers have learned the tip operates in the opposite manner when used in water: it lags while passing over a hard object and advances when scanning the gelatinous surface of a biological membrane.

Researchers deposited the membrane and viruses on a sheet of mica. Tests showed the differing properties of the inner and outer sides of the membrane and details about the latticelike protein structure of the membrane. Findings also showed the different properties of the balloonlike head, stiff collar and hollow tail of the Phi29 virus, called a bacteriophage because it infects bacteria.

"The findings suggest that phase contrast in liquids can be used to reveal rapidly the intrinsic variations in local stiffness with molecular resolution, for example, by showing that the head and the collar of an individual virus particle have different stiffness," Raman said.

The research was funded by the National Science Foundation and was conducted at the Birck Nanotechnology Center in Purdue's Discovery Park. The biological membrane images were taken at Purdue, and the virus studies were performed at the Universidad Autónoma de Madrid.

The paper was authored by Melcher; Carolina Carrasco, a postdoctoral researcher at Universidad Autónoma de Madrid and the Instituto de Ciencia de Materiales de Madrid; Purdue postdoctoral researcher Xin Xu; José L. Carrasco, a researcher at Departmento de Estructura de Macomoléculas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas; Julio Gómez-Herrero and Pedro José de Pablo, both researchers from Universidad Autónoma de Madrid; and Raman.

Related Web sites:

Arvind Raman:
https://engineering.purdue.edu/ME/People/ptProfile?id=12884
Birck Nanotechnology Center:
http://www.nano.purdue.edu
Discovery Park:
http://purdue.edu/discoverypark
National Science Foundation:
http://www.nsf.gov/
A publication-quality image is available at http://news.uns.purdue.edu/images/+2009/raman-watery.jpg

Abstract on the research in this release is available at: http://news.uns.purdue.edu/x/2009b/090811RamanWatery.html

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>