Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital zebrafish embryo provides the first complete developmental blueprint of a vertebrate

10.10.2008
New Google EarthTM - like model allows zooming in on the development of zebrafish

Researchers at the European Molecular Biology Laboratory (EMBL) have generated a digital zebrafish embryo - the first complete developmental blueprint of a vertebrate.

With a newly developed microscope scientists could for the first time track all cells for the first 24 hours in the life of a zebrafish. The data was reconstructed into a three-dimensional, digital representation of the embryo.

The study, published in the current online issue of Science, grants many new insights into embryonic development. Movies of the digital embryo and the underlying database of millions of cell positions, divisions and tracks will be made publicly available to provide a novel resource for research and scientific training.

To get from one cell to a complex organism, cells have to divide, travel around the body and arrange intricate shapes and specialized tissues. The best way to understand these dynamic processes is to look at what happens in the first few hours of life in every part of an embryo. While this is possible with invertebrates with a few hundred cells, like worms for example, it has so far been impossible to achieve for vertebrates.

“Imagine following all inhabitants of a town over the course of one day using a telescope in space. This comes close to tracking the 10 thousands of cells that make up a vertebrate embryo – only that the cells move in three dimensions,” says Philipp Keller. Together with Annette Schmidt he carried out the research in the labs of Jochen Wittbrodt and Ernst Stelzer at EMBL.

Two newly developed technologies were key to the scientists’ interdisciplinary approach to tracking a living zebrafish embryo from the single cell stage to 20,000 cells: a Digital Scanned Laser Light Sheet Microscope, that scans a living organism with a sheet of light along many different directions so that the computer can assemble a complete 3D image, and a large-scale computing pipeline operated at the Karlsruhe Institute of Technology.

Zebrafish is a widely used model organism that shares many features with higher vertebrates. Taking more than 400,000 images per embryo the interdisciplinary team generated terabytes of data on cell positions, movements and divisions that were reassembled into a digital 3D representation of the complete developing embryo.

“The digital embryo is like Google EarthTM for embryonic development. It gives an overview of everything that happens in the first 24 hours and allows you to zoom in on all cellular and even subcellular details,” says Jochen Wittbrodt, who has recently moved from EMBL to the University of Heidelberg and the Karlsruhe Institute of Technology.

New insights provided by the digital embryo include: fundamental cell movements that later on form the heart and other organs are different than previously thought and the position of the head-tail body axes of the zebrafish is induced early on by signals deposited in the egg by the mother.

The new microscopy technology is also applicable to mice, chickens and frogs. A comparison of digital embryos of these species is likely to provide crucial insights into basic developmental principles and their conservation during evolution.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>