Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital zebrafish embryo provides the first complete developmental blueprint of a vertebrate

10.10.2008
New Google EarthTM - like model allows zooming in on the development of zebrafish

Researchers at the European Molecular Biology Laboratory (EMBL) have generated a digital zebrafish embryo - the first complete developmental blueprint of a vertebrate.

With a newly developed microscope scientists could for the first time track all cells for the first 24 hours in the life of a zebrafish. The data was reconstructed into a three-dimensional, digital representation of the embryo.

The study, published in the current online issue of Science, grants many new insights into embryonic development. Movies of the digital embryo and the underlying database of millions of cell positions, divisions and tracks will be made publicly available to provide a novel resource for research and scientific training.

To get from one cell to a complex organism, cells have to divide, travel around the body and arrange intricate shapes and specialized tissues. The best way to understand these dynamic processes is to look at what happens in the first few hours of life in every part of an embryo. While this is possible with invertebrates with a few hundred cells, like worms for example, it has so far been impossible to achieve for vertebrates.

“Imagine following all inhabitants of a town over the course of one day using a telescope in space. This comes close to tracking the 10 thousands of cells that make up a vertebrate embryo – only that the cells move in three dimensions,” says Philipp Keller. Together with Annette Schmidt he carried out the research in the labs of Jochen Wittbrodt and Ernst Stelzer at EMBL.

Two newly developed technologies were key to the scientists’ interdisciplinary approach to tracking a living zebrafish embryo from the single cell stage to 20,000 cells: a Digital Scanned Laser Light Sheet Microscope, that scans a living organism with a sheet of light along many different directions so that the computer can assemble a complete 3D image, and a large-scale computing pipeline operated at the Karlsruhe Institute of Technology.

Zebrafish is a widely used model organism that shares many features with higher vertebrates. Taking more than 400,000 images per embryo the interdisciplinary team generated terabytes of data on cell positions, movements and divisions that were reassembled into a digital 3D representation of the complete developing embryo.

“The digital embryo is like Google EarthTM for embryonic development. It gives an overview of everything that happens in the first 24 hours and allows you to zoom in on all cellular and even subcellular details,” says Jochen Wittbrodt, who has recently moved from EMBL to the University of Heidelberg and the Karlsruhe Institute of Technology.

New insights provided by the digital embryo include: fundamental cell movements that later on form the heart and other organs are different than previously thought and the position of the head-tail body axes of the zebrafish is induced early on by signals deposited in the egg by the mother.

The new microscopy technology is also applicable to mice, chickens and frogs. A comparison of digital embryos of these species is likely to provide crucial insights into basic developmental principles and their conservation during evolution.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>