Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in Jet Lag Severity Could be Rooted in How Circadian Clock Sets Itself

17.10.2011
It’s no secret that long-distance, west-to-east air travel – Seattle to Paris, for example – can raise havoc with a person’s sleep and waking patterns, and that the effects are substantially less pronounced when traveling in the opposite direction.

Now researchers, including a University of Washington biologist, have found hints that differing molecular processes in an area of the brain known as the suprachiasmatic nucleus might play a significant role in those jet lag differences.

Human circadian clocks operate on a period about 20 minutes longer than one day and so must be synchronized to the light-dark cycle of the solar day, delaying or advancing their time in response to light.

Someone whose clock runs faster than a solar day must delay it on a daily basis, and someone whose clock runs slower than a solar day must advance it. These daily adjustments happen naturally, and without our noticing, but the process is disrupted by sudden large shifts in the light-dark cycle because of a radically new geographic location.

Researchers previously learned that delaying the circadian clock happens through different pathways in the suprachiasmatic nucleus than advancing the clock does. The new research shows that, at a molecular level, the mechanisms responsible for resetting the expression of the “clock genes” are drastically different.

“We have known for decades that, in humans and other organisms, advances are always much harder to achieve than delays. For example, compare jet lag going to Europe with that coming back,” said Horacio de la Iglesia, a UW associate professor of biology.

“One of the reasons may be that these two forms of resetting the clock involve different molecular mechanisms at the clock level,” he said.

de la Iglesia and William Schwartz of the University of Massachusetts Medical School are corresponding authors of a paper detailing the research, published online recently (Oct. 3) in the Proceedings of the National Academy of Sciences. Co-authors are Mahboubeh Tavakoli-Nezhad, Christopher Lambert and David Weaver, also of the University of Massachusetts Medical School.

The researchers exposed hamsters to two light-dark cycles, one of 23.33 hours and the other at 24.67 hours, to test the mechanisms that advance and delay the circadian clock. A one-hour light pulse in the shorter cycle acted as dawn, but in the longer cycle it acted as dusk. The scientists confirmed that the pulse of light at dawn advanced the animals’ circadian clocks, while the light at dusk delayed the clocks.

The results suggest that different molecular mechanisms in the suprachiasmatic nucleus are at work when the circadian clocks are advanced than when the clocks are delayed, de la Iglesia said.

That could provide clues for understanding how circadian clocks work in nocturnal animals in natural conditions, and it could help in understanding potential remedies for jet lag.

The work was supported by a grant from the National Institutes of Health.

For more information, contact de la Iglesia at 206-616-4697, 206-616-3932 or horaciod@uw.edu, or Schwartz at 508-856-5666 or william.schwartz@umassmed.edu.

An abstract of the paper is available at http://www.pnas.org/content/early/2011/09/29/1107848108.abstract

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>