Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in the genomes of related plant pathogens

13.08.2012
Even in closely related species, lifestyle molds the genetic makeup of pathogens and how their genes are used

Many crop plants worldwide are attacked by a group of fungi that numbers more than 680 different species. After initial invasion, they first grow stealthily inside living plant cells, but then switch to a highly destructive life-style, feeding on dead cells.

While some species switch completely to host destruction, others maintain stealthy and destructive modes simultaneously. A team of scientists led by Richard O'Connell from the Max Planck Institute for Plant Breeding Research in Cologne and Lisa Vaillancourt from University of Kentucky in Lexington have investigated the genetic basis for these two strategies.

The researchers found that pathogen life-style has moulded the composition of these fungal genomes and determines when particular genes are switched on. They also discovered surprising new functions for fungal infection organs.

Colletotrichum fungi cause rots and leaf spot diseases which are spread by wind and rain splash. They cause devastating economic losses on food and biofuel crops running into billions of euros each year. While some species attack many different plants, others are highly selective and attack just one host plant. The two species investigated by O'Connell and his colleagues differ in their life-style and their host specificity. One species preferentially attacks crucifers, including thale cress (Arabidopsis thaliana), a model plant important for biologists.

Within just a few hours, this pathogen switches its metabolism towards the complete destruction of the plant cells. For this fungus, benign coexistence and massive destruction are separated in time. The other species studied is specifically adapted to maize. In one part of the plant it produces proteins to promote symptomless coexistence, while elsewhere it produces proteins to break-down and digest plant cells. In this case, the two life-styles are spatially separated.

The strength of this work, published in Nature Genetics, is that the researchers analysed both the genome and transcriptome of these two fungi. "The transcriptome reveals which genes are switched on and when. Several other fungal genomes have already been decoded, but never with such detailed information about if and when each gene is used during plant infection", says O'Connell. For example, both genomes have similar numbers of genes for hemicellulase enzymes, with which the plant cell wall is decomposed. However, the maize fungus switches on many more of these genes because the cell walls of maize contain more hemicellulose than do plants attacked by the Arabidopsis fungus. "This difference could not have been identified simply from cataloguing the numbers of such genes in the genome: transcriptome data are essential to obtain this information", explains O'Connell.

The genomes of the two pathogens are similar in size, but the Arabidopsis fungus accommodates more genes in its genome, probably as a result of its broader host range. A pathogen that attacks a single plant requires fewer genes than one which colonizes many different plants. This is especially true for "effector" genes, which are required by the fungus to protect itself from the plant's defence responses. Both fungi have remarkably large numbers of genes for producing secondary metabolites, which are small molecules with potential roles during infection. "We are not aware of any other phytopathogenic fungi that produce so many secondary metabolites", says Jochen Kleemann who, together with other colleagues from the Max Planck Institute for Plant Breeding Research in Cologne, was also involved the study. "The genes for these products are switched on very early on during infection and are therefore potential targets for plant protection. But first we need to understand more about the functions of these molecules", continues Kleemann.

The scientists also discovered previously unknown functions of the fungal adhesion organ, the appressorium. The appressorium is formed after a fungal spore lands on the leaf surface and builds up a high pressure, with which the fungus pushes itself into the interior of the plant cell, like a finger into an inflated balloon. "On a leaf, the adhesion organ switches on completely different genes than when it is located on a plastic surface. It must in some way recognize where it is", says O'Connell. The adhesion organ would thus appear not only to open the door into the plant cell, but also to sense the presence of the plant. "Appressoria were discovered almost 130 years ago, but it is only from our research that it has become clear that they also have a sensing function", says Kleemann.

Original work:

Richard J O'Connell et al.
Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

Nature Genetics, August 12, 2012, DOI: 10.1038/ng.2372

Richard O'Connell | EurekAlert!
Further information:
http://www.mpipz.mpg.de

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>