Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device Could Improve Harvest of Stem Cells from Umbilical Cord Blood

22.06.2011
Johns Hopkins graduate students have invented a system to significantly boost the number of stem cells collected from a newborn’s umbilical cord and placenta, so that many more patients with leukemia, lymphoma and other blood disorders can be treated with these valuable cells.

The prototype is still in the testing stage, but initial results are promising. The student inventors have obtained a provisional patent covering the technology and have formed a company, TheraCord LLC, to further develop the technology, which may someday be used widely in hospital maternity units. The students say the need for this system is obvious.

“Cord blood, collected from the umbilical cord and placenta after live birth, is the most viable source of stem cells, yet over 90 percent is uncollected and discarded,” the team members wrote in a presentation of their project at the university’s recent Biomedical Engineering Design Day. “One of the main reasons valuable cord blood is so frequently discarded is because no adequate collection method exists.”

The students say their easy-to-use invention, called the CBx System, could remedy these shortcomings.

When a baby is born, a few families pay for private collection and storage of the child’s cord blood, in case its stem cells are needed to treat a future illness. When families do not choose this option, the materials containing cord blood are generally thrown away as medical waste. But at the 180 hospitals affiliated with public cord blood banks, new mothers can donate cord blood so that its stem cells can be extracted and used to rebuild the immune systems of seriously ill patients, particularly those with blood cancers such as leukemia, lymphoma and myeloma.

According to the Johns Hopkins students, the current method of collecting these cells from cord blood doesn’t work well because it relies strictly on gravity. The National Marrow Donor Program says about 50 percent of the units collected in this way contain enough stem cells to be stored for transplant use. Another organization, the National Cord Blood Program, says only 40 percent of collected units meet transplantation standards. Even when the procedure is successful, the Johns Hopkins students said, the average collection yields only enough stem cells to treat a child but not enough to treat an adult patient, based on the recommended cell dosage.

To solve these problems, the students, who were enrolled in a master’s degree program in the university’s Center for Bioengineering Innovation and Design, spent the past year developing a new collection method that uses both mechanical forces and a chemical solution to help detach and flush more stem cells from the cord and placenta blood vessels.

“This is important for two reasons,” said James Waring, a member of the student team. “First, we believe it collects enough cells from each birth so that stem-cell therapy can be used on adult patients, who need more cells.”

In addition, in early testing on discarded cords and placentas at The Johns Hopkins Hospital, the team’s device collected up to 50 percent more stem cells than the traditional gravity system, the students said.

“We think our system will increase the number of successful cord blood collections, meaning more patients overall will benefit,” Waring said.

Along with Waring, the student inventors were Elias Bitar, Chris Chiang, Matthew Means and Sean Monagle. While developing the system, the team entered its project in college business plan competitions, gathering recognition from judges and about $14,000 in prize money. After completing their academic program, the students recently received their master’s degrees. Team members Chiang and Means have chosen to remain in Baltimore to manage and advance TheraCord over the coming year.

“Our next step,” said Chiang, “is to optimize the system so that it collects even more stem cells. Based on previous experiments using similar techniques, we believe it's possible to get two to five times the amount produced by the existing gravity technique. The other important goal is to make the system as easy as possible for hospital employees to use.”

The students learned about the need for a better way to collect stem cells early in their master’s program, when they accompanied physicians on hospital rounds to learn what new medical tools and devices were needed most urgently.

Edith Gurewitsch, a Johns Hopkins School of Medicine associate professor of gynecology/obstetrics and biomedical engineering, first identified the clinical need for a better method to collect cord blood. Agreeing to be the student team's clinical advisor, she provided guidance on both the clinical and workflow aspects of the device's design. In the patent documents, Gurewitsch is listed as a co-inventor of the CBx System technology.

Related links:
Johns Hopkins Center for Bioengineering Innovation and Design: http://cbid.bme.jhu.edu/

Johns Hopkins Department of Biomedical Engineering: http://www.bme.jhu.edu/

Phil Sneiderman | Newswise Science News
Further information:
http://www.bme.jhu.edu/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>