Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device Could Improve Harvest of Stem Cells from Umbilical Cord Blood

22.06.2011
Johns Hopkins graduate students have invented a system to significantly boost the number of stem cells collected from a newborn’s umbilical cord and placenta, so that many more patients with leukemia, lymphoma and other blood disorders can be treated with these valuable cells.

The prototype is still in the testing stage, but initial results are promising. The student inventors have obtained a provisional patent covering the technology and have formed a company, TheraCord LLC, to further develop the technology, which may someday be used widely in hospital maternity units. The students say the need for this system is obvious.

“Cord blood, collected from the umbilical cord and placenta after live birth, is the most viable source of stem cells, yet over 90 percent is uncollected and discarded,” the team members wrote in a presentation of their project at the university’s recent Biomedical Engineering Design Day. “One of the main reasons valuable cord blood is so frequently discarded is because no adequate collection method exists.”

The students say their easy-to-use invention, called the CBx System, could remedy these shortcomings.

When a baby is born, a few families pay for private collection and storage of the child’s cord blood, in case its stem cells are needed to treat a future illness. When families do not choose this option, the materials containing cord blood are generally thrown away as medical waste. But at the 180 hospitals affiliated with public cord blood banks, new mothers can donate cord blood so that its stem cells can be extracted and used to rebuild the immune systems of seriously ill patients, particularly those with blood cancers such as leukemia, lymphoma and myeloma.

According to the Johns Hopkins students, the current method of collecting these cells from cord blood doesn’t work well because it relies strictly on gravity. The National Marrow Donor Program says about 50 percent of the units collected in this way contain enough stem cells to be stored for transplant use. Another organization, the National Cord Blood Program, says only 40 percent of collected units meet transplantation standards. Even when the procedure is successful, the Johns Hopkins students said, the average collection yields only enough stem cells to treat a child but not enough to treat an adult patient, based on the recommended cell dosage.

To solve these problems, the students, who were enrolled in a master’s degree program in the university’s Center for Bioengineering Innovation and Design, spent the past year developing a new collection method that uses both mechanical forces and a chemical solution to help detach and flush more stem cells from the cord and placenta blood vessels.

“This is important for two reasons,” said James Waring, a member of the student team. “First, we believe it collects enough cells from each birth so that stem-cell therapy can be used on adult patients, who need more cells.”

In addition, in early testing on discarded cords and placentas at The Johns Hopkins Hospital, the team’s device collected up to 50 percent more stem cells than the traditional gravity system, the students said.

“We think our system will increase the number of successful cord blood collections, meaning more patients overall will benefit,” Waring said.

Along with Waring, the student inventors were Elias Bitar, Chris Chiang, Matthew Means and Sean Monagle. While developing the system, the team entered its project in college business plan competitions, gathering recognition from judges and about $14,000 in prize money. After completing their academic program, the students recently received their master’s degrees. Team members Chiang and Means have chosen to remain in Baltimore to manage and advance TheraCord over the coming year.

“Our next step,” said Chiang, “is to optimize the system so that it collects even more stem cells. Based on previous experiments using similar techniques, we believe it's possible to get two to five times the amount produced by the existing gravity technique. The other important goal is to make the system as easy as possible for hospital employees to use.”

The students learned about the need for a better way to collect stem cells early in their master’s program, when they accompanied physicians on hospital rounds to learn what new medical tools and devices were needed most urgently.

Edith Gurewitsch, a Johns Hopkins School of Medicine associate professor of gynecology/obstetrics and biomedical engineering, first identified the clinical need for a better method to collect cord blood. Agreeing to be the student team's clinical advisor, she provided guidance on both the clinical and workflow aspects of the device's design. In the patent documents, Gurewitsch is listed as a co-inventor of the CBx System technology.

Related links:
Johns Hopkins Center for Bioengineering Innovation and Design: http://cbid.bme.jhu.edu/

Johns Hopkins Department of Biomedical Engineering: http://www.bme.jhu.edu/

Phil Sneiderman | Newswise Science News
Further information:
http://www.bme.jhu.edu/

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>