Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device for identifying aggressive breast cancers

29.09.2010
A new disposable device based on advances in microfluidics may help identify advanced breast cancer patients who are candidates for therapy with the drug trastuzumab (Herceptin). The device is described in the American Institute of Physics' journal Biomicrofluidics.

Aggressive breast cancers with poor prognosis typically have abnormal levels of the protein HER2 (the tyrosine kinase human epidermal growth factor receptor 2). The new elastomeric, rubber-like device is designed to efficiently capture cancer cells overexpressing HER2 in circulating blood.

Finding a way to identify these cells is medically relevant because HER2 positive patients with early breast cancer have been found to significantly benefit from treatment with Herceptin or trastuzumab, the humanized monoclonal antibody against HER2, which can lower recurrence risk by about half. Given the cost ($50,000 - $65,000 per year in the United States) and possible side effects of Herceptin therapy, establishing HER2 status is crucial.

Current methodologies for determining HER2 status include immunohistochemistry and fluorescence in situ hybridization (FISH), both of which require biopsies. But biopsy-based testing may lead to ineffective treatment choices because in about 20% of breast cancers, the HER2 status of the primary tumor may differ from that of a metastatic tumor. This fact has made the non-invasive alternative of profiling circulating tumor cells a long-sought but elusive goal. Isolating circulating tumor cells, which are present at ratios as low as 1 to 10 per billion blood cells, is extremely challenging.

Recently, interest in microfluidic devices for capturing circulating tumor cells (CTCs) has intensified because of their greatly improved capabilities. A microfabricated device developed by researchers at the Massachusetts General Hospital and designed to bind to cells of epithelial origins (most cancers originate from epithelial tissues) circulating in the blood demonstrated near-perfect ability to isolate circulating tumor cells across a range of cancers.

In a study supported by the National Health and Medical Research Council Australia, Benjamin Thierry and colleagues at the Ian Wark Research Institute at the University of South Australia developed a plastic-based disposable microfluidic device offering several improvements for capturing circulating tumor cells. The device is designed to take advantage of the features of an organic silicone found in contact lenses and shampoos called polydimethylsiloxane (PDMS), which is compatible with soft molding techniques, transparent, and permeable to gasses.

The device is significantly easier and cheaper to make than the prior microfabricated one. The major challenge associated with PDMS use in biodiagnostic applications is its lack of chemical reactivity. The team used a novel plasma-based polymerization process to overcome that problem. The process creates a durable polymeric layer on the device's surface containing a high number of reactive molecules, which can readily be used to attach proteins able to capture cancer cells but not normal blood cells.

With a commonly used breast cancer cell line (SK-BR-3) as a model for cells overexpressing HER2, Dr. Thierry's device demonstrated an ~80% immuno-capture efficacy of HER positive cells from full blood in model and validation studies.

Thierry concluded, "Microfluidic-based devices offer a unique opportunity to efficiently isolate CTCs from patient's blood, thereby opening a window on the pathophysiology of cancer and its progression. We hope that our device will provide a fast, reliable and affordable methodology to establish HER2 status for breast cancer patients presenting metastases, thereby enabling the selection of more potent therapy based on trastuzumab. We are aiming to achieve clinical validation in the coming months and, with the support of a fellowship from the Prostate Cancer Foundation of Australia, to extend the study to the detection of aggressive forms of prostate cancer."

The article, "Herceptin-Functionalized Microfluidic PDMS Devices for the Capture of HER2 Positive Circulating Breast Cancer Cells Benjamin Thierry, Mahaveer Kurkuri, Jun Yan Shi, Lwin Ei Mon Phyo Lwin and Dennis Palms (University of South Australia) appears in the journal Biomicrofluidics.

ABOUT Biomicrofluidics

Biomicrofluidics is an online open-access journal published by the American Institute of Physics to rapidly disseminate research in elucidating fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See: http://bmf.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>