Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desert Rhubarb – A Self-irrigating Plant

02.07.2009
Researchers from the Department of Science Education-Biology at the University of Haifa-Oranim have managed to make out the "self-irrigating" mechanism of the desert rhubarb, which enables it to harvest 16 times the amount of water than otherwise expected for a plant in this region based on the quantities of rain in the desert. This is the first example of a self-irrigating plant worldwide.

The desert rhubarb grows in the mountains of Israel's Negev desert, where average precipitation is particularly low (75 mm per year).

Unlike most of the other desert plant species, which have small leaves so as to minimize moisture loss, this plant is unique in that its leaves are particularly large; each plant's rosette of one to four leaves reaches a total diameter of up to one meter.

Prof. Simcha Lev-Yadun, Prof. Gidi Ne'eman and Prof. Gadi Katzir came across this unique plant growing in the desert while studying the field area with students of the Department of Science Education-Biology of the University of Haifa-Oranim, and noticed that its leaves are unusually large and covered with a waxy cuticle. They observed an exceptionally ridged structure on each leaf, forming a leaf structure that resembles the habitat's mountainous topography.

The scientists explained that these deep and wide depressions in the leaves create a "channeling" mountain-like system by which the rain water is channeled toward the ground surrounding the plant's deep root. Other desert plants simply suffice with the rain water that penetrates the ground in its immediate surroundings.

The findings have shown that the natural selection process has resulted in the evolution of this plant's extremely large leaves, which improved its ability to survive in the arid climate of the desert. The results of experiments and analysis of the plant's growth - in an area with an average annual rainfall of 75 mm - showed that the desert rhubarb is able to harvest quantities of water that are closer to that of Mediterranean plants, reaching up to 426 mm per year. This is 16 times the amount of water harvested by the small-leafed plants of the Negev desert region. When the research team watered the plant artificially, they observed how the water flows along the course of the leave's depressed veins to the ground surrounding the plant's single root and then penetrates the ground to a depth of 10 cm or more. Under the experimental conditions, water penetrated the ground only as deep as 1 cm.

"We know of no other plant in the deserts of the world that functions in this manner," the researchers concluded.

Amir Gilat | Newswise Science News
Further information:
http://www.haifa.ac.il

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>