Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deletions and duplications in the exome can help pinpoint cause of unexplained genetic diseases

02.06.2014

Analysis of genetic variation in the exome, the DNA sequence of genes that are translated into protein, can aid in uncovering the cause of conditions for which no genetic cause could previously be found, and this can directly impact clinical management, the annual conference of the European Society of Human Genetics will hear today.

Dr Jayne Hehir-Kwa, Assistant Professor of Bioinformatics in the Translational Research group, Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands, will describe results from her group's study that set out to determine whether copy number variants (CNVs), large genomic deletions or duplications, can contribute to diseases other than intellectual disability.

The role of CNVs in intellectual disability is well known, but their implication in other conditions is less so. "There are, for example, case reports describing deletions in blindness, but no-one has determined the full extent of CNVs in other patient groups," Dr Hehir-Kwa will say.

The team screened 600 patients for which no diagnosis or causal mutation could be found using current whole exome sequencing (WES) methodology, and looked genome-wide for a causal deletion or duplication. It is, they say, the first time anyone has screened systematically for a disease mechanism in such a large and diverse patient group, including five heterogeneous conditions – intellectual disability, deafness, blindness, metabolic disorders, and movement disorders.

"For these patient groups, targeted gene approaches have been traditionally used for mutation screening and hence the contribution of CNVs to these disease groups has never been established and genome-wide testing rarely applied," says Dr Hehir-Kwa. "Our results show that CNVs are a relatively common, clinically-relevant event."

CNVs were found in patients with many different kinds of disorders, for example retinitis pigmentosa (blindness), Usher syndrome (deafness), Bethlem/Ulrich myopathy (a congenital form of muscular dystrophy), hypotonia-cystinuria syndrome (a neonatal-onset metabolic disorder) and X-linked immunodeficiency (an inherited disorder of the immune system).

"Although WES is not perfect in terms of completely cataloguing genomic variation, our work has shown that it can play an important part in diagnosis. In addition to helping us devise better clinical management strategies for patients, it also affects their prognosis and provides information which can aid us with reproductive counselling for affected individuals," says Dr Hehir-Kwa. "As a result, we are now offering the CNV screening performed in our study as a standard diagnostic procedure in exome analysis for patients where the genetic cause of their condition has not been found previously."

The diagnostic yield differs between the different disease categories, the researchers say. Traditional screening for genetic mutations can explain 27% of intellectual disability, 52% of blindness, and up to 20% of individuals with mitochondrial and movement disorders. "This means that between 48-80% of patients screened with WES are not given a genetic diagnosis. By looking for CNVs in the exon regions of these undiagnosed patients we estimate that we can find such a diagnosis in about a further four percent.

In particular, the blindness conditions seem to have the highest yield of CNVs – up to seven percent," says Dr Hehir-Kwa. "I would like to see screening for more types of genomic variants become standard procedure in genetic diagnostics. The genome of an individual can contain all kinds of different variants, in all shapes and sizes, and it is important that we take all these variations into account." WES, when offered as a first tier diagnostic test, can give a high diagnostic yield, and the result is faster diagnostics at lower cost.

"The more complete and thorough we can make such a diagnostic test, the more accessible we make genetic testing for the public. However, clinical health care professionals need to be well informed about the different genetic disease mechanisms to provide the best possible counselling for patients," Dr Hehir-Kwa will conclude.

Mary Rice | Eurek Alert!
Further information:
https://www.eshg.org/

Further reports about: CNVs Genetics Human blindness deafness diagnosis disability diseases disorder disorders duplications genomic metabolic variants

More articles from Life Sciences:

nachricht Novel 'repair system' discovered in algae may yield new tools for biotechnology
29.07.2016 | Boyce Thompson Institute

nachricht Molecular troublemakers instead of antibiotics?
29.07.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>