Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deeper insight in the activity of cortical cells

13.07.2011
Max Planck scientists can image the processing of information deeper in the cortex with the help of a new multi photon microscope design

Visual and tactile objects in our surroundings are translated into a perception by complex interactions of neurons in the cortex. The principles underlying spatial and temporal organization of neuronal activity during decision-making and object perception are not all understood yet. Jason Kerr from Max Planck Institute for Biological Cybernetics in Tübingen, in collaboration with Winfried Denk from the Max Planck Institute for Medical Research in Heidelberg, now investigated how different sensations are represented by measuring activity in neuronal populations deep in the cortex. The scientists developed a method, with which they can study the neuronal activity in some of the deepest layers of the cortex in rodents, something that has not been possible up until now.


Left is an image of a cross-section through the whole mammalian brain that shows both brain hemispheres (solid white outline) as well as the overlaying cerebral cortex which is made up of many layers (I – VI). On the right hemisphere are brain cells, neurons, labeled with a genetically encoded fluorescent marker that reports back the cells activity by fast changes in brightness. This image has been taken from a brain slice post mortem where the lower limit of the cortex can be seen (dotted white line). Right, this image shows the same deep layer V brain cells (red box) labeled with the genetically encoded fluorescent marker but actually imaged non-invasively from a living animal using a modified multiphoton microscope, or RAMM approach. This allows scientists to study activity in neuronal populations deep in the cortex of an awake behaving animal and will lead to a deeper understanding of how cortical networks perform computations. © Wolfgang Mittmann, Jason Kerr / Max Planck Institute for Biological Cybernetics

The cerebral cortex, or just cortex, is the outermost sheet of neural tissue of the mammalian brain. It plays a key role in memory, perceptual awareness and consciousness. It receives and processes the information from the senses, such as sight, touch or smell. The principles underlying these processes are not fully understood yet. Jason Kerr, research group leader of the Network Imaging Group at the Max Planck Institute for Biological Cybernetics in Tübingen and his colleagues from the same institute, Wolfgang Mittmann, Damian Wallace und Uwe Czubayko managed to image neuronal activity simultaneously from many neurons with single cell resolution, over twice as deep as previously achieved. In collaboration with Winfried Denk from the Department Biomedical Optics at the Max Planck Institute for Medical Research in Heidelberg and scientists from the Howard Hughes Medical Institute in Ashburn, Virginia they studied the neural cell activity in layer L5b in the adult rodent, which, as well as being one of the output layers of the cortex, it is also only one layer away from the cortex end.

Up until now. most imaging studies were restricted to the upper third of the cortex in the so-called layers L2 and L3. Deeper layers could only be studied using electrodes or by damaging the cortex using optical fibers or prisms. The Max Planck scientists now further developed a method, with which they can see exactly which cell is active and importantly, what cells are not active during a stimulus up to one millimeter from the cortical surface. This has enabled the scientists to measure the spatiotemporal organization of activity in these deep layers.

“We express a genetically encoded fluorescent activity reporter in the neurons of interest and with this we can measure the activity of many neurons at the same time”, explains Jason Kerr. Changes in brightness of the fluorescent marker are relative to the activity of the neuron. Using the new multi photon imaging technique the activity of many neuronal populations in the deeper cortical layers can be recorded simultaneously in vivo. Jason Kerr and his team combined regenerative amplification multiphoton microscopy (RAMM) with generally encoded calcium indicators to extend multi photon imaging of neuronal population activity to the deeper layers of the cortex. Using this approach, they found, that it could be used to record and quantify spontaneous and activity evoked in the animal by sensory stimulation such as whisker touches or natural movies in neuronal populations of the layer L5a and L5b.

The goal of their research is to record activity from populations of neurons located in all cortical layers, from the layer 6 to layer 1. In combination with genetically encoded activity indicators, the team plans to investigate the spatial temporal organization of neuronal activity from all cortical layers in animals trained to discriminate between objects. Further, they want to address the question of whether the deeper layers also show spatiotemporal re-organization similar to that shown for the upper cortical layers during learning. With these technical advances the scientists aim to gain insights into cortical circuits involved in decision making in the awake, behaving cortex, and how these circuits are functionally modified during learning.

Contact
Dr. Jason Kerr
Max Planck Institute for Biological Cybernetics, Tübingen
Phone: +49 70 7160-11721
Email: Jason@tuebingen.mpg.de
Stephanie Bertenbreiter
Press and Public Relations
Max Planck Institute for Biological Cybernetics, Tübingen
Phone: +49 7071 601-472
Email: presse@tuebingen.mpg.de
Original publication
Wolfgang Mittmann, Damian J Wallace, Uwe Czubayko, Jan T Herb, Andreas T Schaefer, Loren L Looger, Winfried Denk & Jason N D Kerr.
(2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo.

Nature Neuroscience doi:10.1038/nn.2879

Stephanie Bertenbreiter | Max-Planck-Institut
Further information:
http://www.mpg.de/4369894/cortical_cell_activity

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>