Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea observatory goes live

18.11.2008
Off the coast of Central California, in the inky darkness of the deep sea, a bright orange metal pyramid about the size of two compact cars sits quietly on the seafloor.

Nestled within the metal pyramid is the heart of the Monterey Accelerated Research System (MARS)-the first deep-sea ocean observatory offshore of the continental United States. Six years and $13.5 million dollars in the making, the MARS Observatory went "live" on Monday, November 10, 2008, returning the first scientific data from 900 meters (3,000 feet) below the ocean surface.

Construction of the observatory was coordinated by the Monterey Bay Aquarium Research Institute (MBARI). According to Marcia McNutt, MBARI president and CEO, "Getting all of the components of the observatory to work together perfectly in the remote, unforgiving, inhospitable environment of the deep sea was no easy task. But the tougher the challenge, the greater the glory when it is finally achieved. Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: 'Watson, come here, I need you!'"

Like the Hubble Space Telescope, the MARS Observatory is not designed for human occupation, but is operated remotely. The observatory will serve as both a "power strip" and a "high-speed internet connection" for scientific instruments in the deep sea. It will allow marine scientists to continuously monitor the dark, mysterious world of the deep sea, instead of relying on brief oceanographic cruises and instruments that run on batteries.

The heart of observatory consists of two titanium pressure cylinders packed with computer networking equipment and electrical transformers. These cylinders are housed in a protective metal pyramid on the deep seafloor. This central hub is connected to shore by a 52-kilometer-long cable that can carry up to 10,000 watts of power and two gigabits per second of data. Most of the cable is buried a meter (three feet) below the seafloor.

Over the next few months, a variety of scientific instruments will be hooked up to the observatory using underwater "extension cords." These will include instruments to monitor earthquakes and to capture deep-sea animals on video. Researchers will also be testing an experiment to study the effects of ocean acidification on seafloor animals. MBARI technicians will use remotely operated vehicles (robot submarines) to plug these instruments into the central hub. After the instruments are hooked up, researchers will be able to run experiments and study deep-sea data and images from anywhere in the world.

Researchers whose experiments are hooked up to the MARS observatory will no longer have to worry about their instruments' batteries wearing out, because their experiments will get all of their electrical power from shore. Even better, researchers won't have to wait for weeks or months to recover their instruments and find out how the experiments turned out. They will be able to look at data and video from the deep sea in real time, 24 hours a day. This will allow researchers will to know immediately if their experiments are working or not.

Providing a place for researchers to test their deep-sea instruments is one of the primary goals of the MARS observatory. Many instruments will be tested on MARS before being hooked up to other deep-sea observatories offshore of the U. S. and other countries.

Funded in 2002 by a grant from the National Science Foundation, the MARS Observatory was constructed through a collaborative effort by MBARI, Woods Hole Oceanographic Institution, the University of Washington Applied Physics Laboratory, NASA's Jet Propulsion Laboratory, L-3 Communications MariPro, and Alcatel-Lucent. Each group was responsible for preparing a different part of the observatory. According to Keith Raybould, the MARS project manager, "MARS was a very challenging project. Our academic partners and contractors used many new, cutting-edge technologies. Everything had to be carefully coordinated so that all the parts of the system would work together seamlessly."

Designing and constructing this one-of-a-kind system took over six years of hard work. The environmental review process for the MARS cable alone lasted over two years and cost roughly one million dollars. One of the biggest technical challenges was creating an underwater electrical system that could convert the 10,000 volts of direct current coming through the cable to the much lower voltages required by scientific instruments.

In April 2007, an undersea cable was laid from the observatory site to shore. On February 26, 2008, MBARI engineers and remotely-operated-vehicle pilots installed the central hub and powered up the system. Unfortunately, after only 20 minutes of operation, the plug for the main power-supply began to leak, and the system had to be shut down.

Following this setback, MBARI staff and contractors spent the next eight months repairing and testing the observatory hub and improving the observatory's power system. This effort culminated in early November, 2008, when the cable-laying ship IT Intrepid arrived in Monterey Bay and hauled the trawl-resistant frame up to the surface. Working around the clock, technicians on board the ship replaced the failed underwater connector, then lowered the frame back down to the seafloor. On November 10, 2008, the MBARI marine operations group reinstalled the observatory hub and powered the system up. All systems worked perfectly. The MARS observatory had finally become a reality.

One of the first experiments that will be hooked up to the MARS observatory is the FOCE project. Led by MBARI chemist Peter Brewer, this experiment will allow researchers to find out how the increasing acidity of seawater is affecting deep-sea animals. Seawater is becoming more acidic in many parts of the ocean as human-generated carbon dioxide in the atmosphere dissolves into the oceans.

Another experiment that will be hooked up to the MARS Observatory is a special low-light video camera called the Eye-in-the-Sea. Developed under the direction of marine biologist Edie Widder, this system illuminates the seafloor with a dim red light that is invisible to many deep-sea animals. When Widder placed an earlier version of this instrument on the seafloor in the Gulf of Mexico, it captured rare footage of deep-sea sharks and of a large squid that was entirely new to science.

A third experiment scheduled for attachment to the observatory is an ultra-sensitive seismometer that will help geologists better understand fault zones and earthquakes along the Central California coast.

Kim Fulton-Bennett | MBARI
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>