Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-Sea Crabs Seek Food Using Ultraviolet Vision

10.09.2012
Some deep-sea crabs have eyes sensitive to ultraviolet light, which they may use to snatch glowing plankton and stuff it in their mouths, a new Nova Southeastern University study suggests.

Tamara Frank, Ph.D., a marine biologist and associate professor at Nova Southeastern University’s Oceanographic Center, who is the principal investigator of the study, said that crabs living the deep-sea zone --- a pitch dark area at the ocean bottom ---- may be using bioluminescence to help sort out their food.

Duke University marine biologist Sönke Johnsen. Ph.D., one of the study’s collaborators, explained that the animals might be using their ultraviolet and blue-light sensitivity to sort out the likely toxic corals they're sitting on ---- which glow, producing blue-green and green bioluminescence --- from the plankton they eat, which glow blue.

The sensitivity to shorter ultraviolet wavelengths may give the crabs a form of color vision to guarantee they grab healthy grub, not poison. Frank and her collaborators reported the findings in the Sept. 6 issue of the Journal of Experimental Biology.

Frank has previously shown that certain deep-sea shrimp living in the water column can see ultraviolet wavelengths, even though they live nearly half a mile below the ocean surface, where there's little to no sunlight. Experiments to test deep-sea creatures' sensitivity to light have rarely been done on animals that live on the bottom of the ocean. The new study is one of the first to test how bottom-dwelling animals respond to light.

The team of scientists studied three ocean-bottom sites near The Bahamas. They took video and images of the regions, recording how crustaceans ate and the wavelengths of light, or color, at which neighboring animals glowed by bioluminescence. The scientists also captured and examined the eyes of eight crustaceans found at the sites and several other sites on earlier research cruises.

To capture the crustaceans, the team used the Johnson-Sea-Link submersible. During the dive, crustaceans were gently suctioned into light-tight, temperature-insulated containers. They were brought to the surface, where Frank placed them in holders in her shipboard lab and attached a microelectrode to each of their eyes.

She then flashed different colors and intensities of light at the crustaceans and recorded their eye response with the electrode. From the tests, she discovered that all of the species were extremely sensitive to blue light and two of them were extremely sensitive to both blue and ultraviolet light.

The two species sensitive to blue and UV light also used two separate light-sensing channels to make the distinction between the different colors. It's the separate channels that would allow the animals to have a form of color vision, said Johnsen, who is an expert in optics.

During a sub dive, Johnsen used a small, digital camera to capture one of the first true-color images of the bioluminescence of the coral and plankton at the sites. In this "remarkable" image, the coral glows greenish, and the plankton, which is blurred because it's drifting by as it hits the coral, glows blue, he said.

Video of the crabs placidly sitting on a sea pen, periodically picking something off corals and putting it in their mouths, and the data showing the crabs' sensitivity to blue and UV light, suggests that they have the ability color code their food. The idea is "still very much in the hypothesis stage, but it's a good idea," Johnsen said.

To further test the hypothesis, the scientists need to collect more crabs and test the animals' sensitivity to even shorter wavelengths of light. That might be possible, but the team will have to use a different sub, since the Johnson-Sea-Link is no longer available.

Another challenge is to find out whether the way the crabs are acting in the video is natural.

"Our subs, nets and ROVs greatly disturb the animals," Johnsen said. "So we're stuck with what I call forensic biology. We collect information about the animals and the environment, and then try to piece together the most likely story of what happened."

The story looks like deep-sea crabs are color-coding their food, he said.

About Nova Southeastern University’s Oceanographic Center: A world leader in marine biological research with focus on coral reef science and shark conservation, Nova Southeastern University’s Oceanographic Center has been at the forefront of graduate and undergraduate marine science education and oceanographic research for over 48 years. Students, scientists, faculty and staff come to the Center from all corners of the globe, with the common goal of learning from the ocean’s living classrooms — in one of the most diverse ecosystems known to man. http://www.nova.edu/ocean/

About Nova Southeastern University: Situated on 300 beautiful acres in Davie, Florida, Nova Southeastern University is a dynamic fully accredited research institution dedicated to providing high-quality educational programs at all levels. NSU is the eighth largest not-for-profit independent institution nationally with more than 28,000 students. NSU awards associate’s, bachelor’s, master’s, specialist, doctoral and first-professional degrees in a wide range of fields. Classified as a research university with “high research activity” by the Carnegie Foundation for the Advancement of Teaching, NSU is one of only 37 universities nationwide to also be awarded Carnegie’s Community Engagement Classification.

Ken Ma | Newswise Science News
Further information:
http://www.nova.edu

More articles from Life Sciences:

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht How circadian clocks communicate with each other
30.05.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>