Decision making in bee swarms mimic neurons in human brains

In previous work, Cornell University biologist Thomas Seeley clarified how scout bees in a honeybee swarm perform “waggle dances” to prompt other scout bees to inspect a promising site that has been found.

In the new study, Seeley, a professor of neurobiology and behavior, reports with five colleagues in the United States and the United Kingdom that scout bees also use inhibitory “stop signals” – a short buzz delivered with a head butt to the dancer – to inhibit the waggle dances produced by scouts advertising competing sites. The strength of the inhibition produced by each group of scouts is proportional to the group's size. This inhibitory signaling helps ensure that only one of the sites is chosen. This is especially important for reaching a decision when two sites are equally good, Seeley said.

Previous research has shown that bees use stop signals to warn nest-mates about such dangers as attacks at a food source. However, this is the first study to show the use of stop signals in house-hunting decisions.

Such use of stop signals in decision making is “analogous to how the nervous system works in complex brains,” said Seeley. “The brain has similar cross inhibitory signaling between neurons in decision-making circuits.”

Co-authors Patrick Hogan and James Marshall of the University of Sheffield in the United Kingdom explored the implications of the bees' cross-inhibitory signaling by modeling their collective decision-making process. Their analysis showed that stop signaling helps bees to break deadlocks between two equally good sites and to avoid costly dithering.

The study was funded by the Cornell Agricultural Experiment Station, the University of California-Riverside and the U.K. Biotechnology and Biological Sciences Research Council.

Media Contact

Blaine Friedlander EurekAlert!

More Information:

http://www.cornell.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors