Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering fungal genomes of white and gray mold rot

06.09.2011
Sequencing and analysis of genomes of fungi responsible for gray mold rot on grapevines and white rot on colza has just been completed by a consortium of international researchers directed by INRA in association with CEA-Genoscope, CNRS, CIRAD and the universities of Marseille-Aix-en-Provence and Lyon.

This research increases understanding of the ability of these fungi to infect numerous plants. Study of the genomes will eventually lead to new methods in an integrated battle against the two major pathogens. All results have been published in the online edition of Plos Genetics of 18 August 2011.

White and gray mold rot are two diseases that affect agricultural plants (sunflower, onion, grapevine, tomato, colza, etc.) both during cultivation and after harvesting. They are caused by microscopic fungi, respectively Sclerotinia sclerotiorum and Botrytis cinerea. The two very closely related species quickly kill plant cells during infection, facilitating colonization of dead tissues; they are known as necrotrophic pathogens.

Both in France and around the world, white and gray mold rot has resulted in considerable economic losses and significant production costs related to the application of fungicidal treatments. New regulations also require finding alternatives to the use of chemicals. In this context, improved understanding of the strategies these fungi use to infect plants is essential.

To compare S. sclerotiorum and B. cinerea and better understand the strategies used in pathogenesis, sequencing of their genomes, which are highly similar, was completed by Genoscope (CEA, France) and the Broad Institute (USA) with the help of a consortium of international laboratories led by INRA. Analysis of their genes shows that they have an impressive arsenal of enzymes with which they can easily decompose the pectin on which they live. This characteristic is related to the fact that they develop essentially on the aerial parts and fruit of plants that are rich in pectin (colza, grapevine, strawberry). Most genes associated with the infection are similar in the two species, including those involved in plant cell wall degradation.

There are also significant differences. There are twice as many secondary metabolism genes, i.e., those involved in the production of bioactive molecules (toxins, signaling components and antibiotics), in B. cinerea as there are in S. sclerotiorum. This diversity may lead to various infectious mechanisms (necrosis-inducing toxins in Botrytis). The two species also differ in their mode of sexual reproduction, S. sclerotiorum is self-fertile (homothallism) while B. cinerea requires a sexual partner of the opposite type (heterothallism). This is explained by some major differences observed in the sequence and organization of genes involved in this process. In practice, these differences in reproduction have an important impact on epidemiology and the methods that may be developed to control these two fungi.

Analysis of the genomes provides valuable information about how S. sclerotiorum and B. cinerea evolved. They also lay the foundations for functional analyses that may explain the necrotrophic nature of the fungi and their distinctive reproductive characteristics, both of which contribute to their ability to infect plants. In the future, further study of the molecular mechanisms involved in the necrotrophic nature of the fungi should lead to the development of new, integrated methods for sustainable management of the diseases.

Full bibliographic information
Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, et al. (2011) Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7(8): e1002230. doi:10.1371/journal.pgen.1002230, http://www.plosgenetics.org/doi/pgen.1002230
Notes for editors
Scientific contacts
Marc-Henri Lebrun
Tel: +33 (0)1 3081 4551 or marc-henri.lebrun@versailles.inra.fr
BIOGER-CPP - Unité de recherche Biologie et gestion des risques en agriculture - Champignons pathogènes des plantes

Centre INRA de Versailles-Grignon

Muriel Viaud
Tel: +33 (0)1 3081 5403 or muriel.viaud@versailles.inra.fr
BIOGER-CPP - Unité de recherche Biologie et gestion des risques en agriculture - Champignons pathogènes des plantes

Centre INRA de Versailles-Grignon

Joëlle Amselem
Tel: +33 (0)1 3083 3395 or joelle.amselem@versailles.inra.fr
URGI - Unité de Recherche Génomique-Info
Centre INRA de Versailles-Grignon

Carolyn Anderson | alfa
Further information:
http://www.cea.fr

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>