Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering fungal genomes of white and gray mold rot

06.09.2011
Sequencing and analysis of genomes of fungi responsible for gray mold rot on grapevines and white rot on colza has just been completed by a consortium of international researchers directed by INRA in association with CEA-Genoscope, CNRS, CIRAD and the universities of Marseille-Aix-en-Provence and Lyon.

This research increases understanding of the ability of these fungi to infect numerous plants. Study of the genomes will eventually lead to new methods in an integrated battle against the two major pathogens. All results have been published in the online edition of Plos Genetics of 18 August 2011.

White and gray mold rot are two diseases that affect agricultural plants (sunflower, onion, grapevine, tomato, colza, etc.) both during cultivation and after harvesting. They are caused by microscopic fungi, respectively Sclerotinia sclerotiorum and Botrytis cinerea. The two very closely related species quickly kill plant cells during infection, facilitating colonization of dead tissues; they are known as necrotrophic pathogens.

Both in France and around the world, white and gray mold rot has resulted in considerable economic losses and significant production costs related to the application of fungicidal treatments. New regulations also require finding alternatives to the use of chemicals. In this context, improved understanding of the strategies these fungi use to infect plants is essential.

To compare S. sclerotiorum and B. cinerea and better understand the strategies used in pathogenesis, sequencing of their genomes, which are highly similar, was completed by Genoscope (CEA, France) and the Broad Institute (USA) with the help of a consortium of international laboratories led by INRA. Analysis of their genes shows that they have an impressive arsenal of enzymes with which they can easily decompose the pectin on which they live. This characteristic is related to the fact that they develop essentially on the aerial parts and fruit of plants that are rich in pectin (colza, grapevine, strawberry). Most genes associated with the infection are similar in the two species, including those involved in plant cell wall degradation.

There are also significant differences. There are twice as many secondary metabolism genes, i.e., those involved in the production of bioactive molecules (toxins, signaling components and antibiotics), in B. cinerea as there are in S. sclerotiorum. This diversity may lead to various infectious mechanisms (necrosis-inducing toxins in Botrytis). The two species also differ in their mode of sexual reproduction, S. sclerotiorum is self-fertile (homothallism) while B. cinerea requires a sexual partner of the opposite type (heterothallism). This is explained by some major differences observed in the sequence and organization of genes involved in this process. In practice, these differences in reproduction have an important impact on epidemiology and the methods that may be developed to control these two fungi.

Analysis of the genomes provides valuable information about how S. sclerotiorum and B. cinerea evolved. They also lay the foundations for functional analyses that may explain the necrotrophic nature of the fungi and their distinctive reproductive characteristics, both of which contribute to their ability to infect plants. In the future, further study of the molecular mechanisms involved in the necrotrophic nature of the fungi should lead to the development of new, integrated methods for sustainable management of the diseases.

Full bibliographic information
Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, et al. (2011) Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7(8): e1002230. doi:10.1371/journal.pgen.1002230, http://www.plosgenetics.org/doi/pgen.1002230
Notes for editors
Scientific contacts
Marc-Henri Lebrun
Tel: +33 (0)1 3081 4551 or marc-henri.lebrun@versailles.inra.fr
BIOGER-CPP - Unité de recherche Biologie et gestion des risques en agriculture - Champignons pathogènes des plantes

Centre INRA de Versailles-Grignon

Muriel Viaud
Tel: +33 (0)1 3081 5403 or muriel.viaud@versailles.inra.fr
BIOGER-CPP - Unité de recherche Biologie et gestion des risques en agriculture - Champignons pathogènes des plantes

Centre INRA de Versailles-Grignon

Joëlle Amselem
Tel: +33 (0)1 3083 3395 or joelle.amselem@versailles.inra.fr
URGI - Unité de Recherche Génomique-Info
Centre INRA de Versailles-Grignon

Carolyn Anderson | alfa
Further information:
http://www.cea.fr

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>