Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deactivating the alarm

26.04.2010
Therapeutic strategies that block inflammatory response to islet cell transplantation may accelerate treatment of diabetic patients

For patients with insulin-dependent diabetes mellitus, the only route to full recovery without daily injections of insulin is by transplantation of pancreatic islet cells. This can be achieved non-surgically via injection of donor cells into the liver, but such treatment also elicits a vigorous negative response from the body.

“Transplantation tolerance can be controlled by immunosuppressive drugs such as FK506,” says Masaru Taniguchi of the RIKEN Research Center for Allergy and Immunology in Yokohama. “However, transplanted islets are rejected soon after transplantation even with the use of FK506.” The mechanism for this rejection is unknown, and patients must typically receive several injections from multiple donors for transplantation to succeed.

High-mobility group box 1 (HMGB1) was first identified as a DNA-binding factor in the cell nucleus, but it is also secreted by immune cells as an apparent trigger for inflammation in response to tissue damage. Taniguchi’s team recently joined forces with Yohichi Yasunami at Fukuoka University to demonstrate the impact of this protein on transplanted islet survival.

They produced diabetic mice by treating the animals with an islet-killing drug, and then transplanted varying numbers of donor islet cells. Animals receiving 200 cells normally developed diabetic symptoms, but these could be averted by simultaneous treatment with HMGB1-blocking antibodies. This treatment also prevented accumulation of immune cells in the liver and countered the production of inflammatory cytokines—typical outcomes of islet transplantation.

The researchers were surprised to note that HMGB1 expression was highly specific to islet cells, with protein levels 20-fold higher than any other organ or tissue examined, further supporting its particular role in islet rejection. In fact, they noted two strong peaks in plasma levels of HMGB1 in transplant recipients: one 24 hours after chemical destruction of islets, and another 6 hours after islet injection. These results suggest that islet stress or damage directly triggers HMGB1 secretion, which in turn activates the inflammatory response pathways that initiate destruction of the transplanted cells.

These findings provide strong hope for improving transplant efficiency. “We can use antibodies in humans without any side effects, because HMGB1 is not present in the serum under physiological conditions,” says Taniguchi, who adds that Yasunami’s team is now exploring clinical strategies based on this approach. However, Taniguchi also hopes to develop chemical inhibitors that preemptively block HMGB1 secretion by donor cells prior to transplantation. “This is ideal,” he says, “because then we do not need to treat patients with any drugs or antibodies.”

The corresponding author for this highlight is based at the Laboratory for Immune Regulation, RIKEN Research Center for Allergy and Immunology

Journal information

1. Matsuoka, N., Itoh, T., Watarai, H., Sekine-Kondo, E., Nagata, N., Okamoto, K., Mera, T., Yamamoto, H., Yamada, S., Maruyama, I. et al. High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in mice. The Journal of Clinical Investigation 120, 735–743 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.rikenresearch.riken.jp/eng/research/6238
http://www.researchsea.com

Further reports about: Allergy Deactivating HMGB1 Immunology RIKEN immune cell immunosuppressive drug islet cells

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>