Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deactivating the alarm

26.04.2010
Therapeutic strategies that block inflammatory response to islet cell transplantation may accelerate treatment of diabetic patients

For patients with insulin-dependent diabetes mellitus, the only route to full recovery without daily injections of insulin is by transplantation of pancreatic islet cells. This can be achieved non-surgically via injection of donor cells into the liver, but such treatment also elicits a vigorous negative response from the body.

“Transplantation tolerance can be controlled by immunosuppressive drugs such as FK506,” says Masaru Taniguchi of the RIKEN Research Center for Allergy and Immunology in Yokohama. “However, transplanted islets are rejected soon after transplantation even with the use of FK506.” The mechanism for this rejection is unknown, and patients must typically receive several injections from multiple donors for transplantation to succeed.

High-mobility group box 1 (HMGB1) was first identified as a DNA-binding factor in the cell nucleus, but it is also secreted by immune cells as an apparent trigger for inflammation in response to tissue damage. Taniguchi’s team recently joined forces with Yohichi Yasunami at Fukuoka University to demonstrate the impact of this protein on transplanted islet survival.

They produced diabetic mice by treating the animals with an islet-killing drug, and then transplanted varying numbers of donor islet cells. Animals receiving 200 cells normally developed diabetic symptoms, but these could be averted by simultaneous treatment with HMGB1-blocking antibodies. This treatment also prevented accumulation of immune cells in the liver and countered the production of inflammatory cytokines—typical outcomes of islet transplantation.

The researchers were surprised to note that HMGB1 expression was highly specific to islet cells, with protein levels 20-fold higher than any other organ or tissue examined, further supporting its particular role in islet rejection. In fact, they noted two strong peaks in plasma levels of HMGB1 in transplant recipients: one 24 hours after chemical destruction of islets, and another 6 hours after islet injection. These results suggest that islet stress or damage directly triggers HMGB1 secretion, which in turn activates the inflammatory response pathways that initiate destruction of the transplanted cells.

These findings provide strong hope for improving transplant efficiency. “We can use antibodies in humans without any side effects, because HMGB1 is not present in the serum under physiological conditions,” says Taniguchi, who adds that Yasunami’s team is now exploring clinical strategies based on this approach. However, Taniguchi also hopes to develop chemical inhibitors that preemptively block HMGB1 secretion by donor cells prior to transplantation. “This is ideal,” he says, “because then we do not need to treat patients with any drugs or antibodies.”

The corresponding author for this highlight is based at the Laboratory for Immune Regulation, RIKEN Research Center for Allergy and Immunology

Journal information

1. Matsuoka, N., Itoh, T., Watarai, H., Sekine-Kondo, E., Nagata, N., Okamoto, K., Mera, T., Yamamoto, H., Yamada, S., Maruyama, I. et al. High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in mice. The Journal of Clinical Investigation 120, 735–743 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.rikenresearch.riken.jp/eng/research/6238
http://www.researchsea.com

Further reports about: Allergy Deactivating HMGB1 Immunology RIKEN immune cell immunosuppressive drug islet cells

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>