Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dating by Electrode

14.07.2014

Voltammetry of microparticles used to date archeological artifacts made of copper and bronze

How can the age of archeological objects be determined if the well-established carbon dating method does not apply, for example for metal objects? Spanish and Portuguese scientists have now introduced a technique for dating artifacts made of copper and bronze. Presented in the journal Angewandte Chemie, their electroanalytical method is based on the voltammetry of microparticles. It compares various corrosion products that form over long periods of time and works with only a few nanograms of material so it causes almost no damage.


Voltammetric experiments produce current–voltage curves that have characteristic shapes for many compounds. In order to date copper-containing, archaeological finds, a team led by Antonio Doménech-Carbó at the University of Valencia examined the ratios of two different copper oxides, tenorite and cuprite, that can be differentiated and quantified based on their voltammetric curves.

When they are exposed to air, copper surfaces become covered by a natural layer of cuprite (Cu2O). Over time, this layer is slowly converted to other products of corrosion. As copper-containing objects age in a slightly corrosive environment, without contact with soils or sea air, a layer of tenorite (CuO) continuously forms over the primary cuprite patina. This occurs because cuprite reacts with oxygen from the air to preferentially form tenorite in an atmosphere containing CO2 or in the presence of calcareous materials. Examination of copper coins by scanning electron microscopy coupled with X-ray spectroscopy confirmed the presence of cuprite and tenorite.

To carry out the electroanalytical experiments, the researchers impregnate a graphite bar electrode with paraffin and dab the surface of the artifact with it. A few nanograms of the sample surface stick to the electrode, which is then dipped into an aqueous electrolyte. This causes almost no damage to the object. Copper oxide microparticles result in very characteristic peaks in the resulting current–voltage curves.

Of particular interest to the researchers is the ratio of the current peaks for tenorite and cuprite. It shows a steady increase with increasing corrosion time, as demonstrated with a series of antique coins from various collections, including the Prehistory Museums of València and Xàtiva (Spain), as well as the artificial ageing of Euro cent coins made of copper. The researchers were able to use the coins to establish a calibration curve that can be used to date objects of unknown age.

The voltammetric dating of a water pitcher from the Caliphal period and a Montefortino helmet from the Roman age gave ages of 1050±80 and 2150±150 years, respectively, which agree well with dates previously established from the archaeological context.

About the Author

Dr. Antonio Doménech-Carbó is Professor at the Department of Analytical Chemistry of the University of Valencia, Spain. His research field is electrochemistry, in particular focused on electroanalytical methods for archaeometry, conservation, and restoration of cultural heritage.

Author: Antonio Doménech-Carbó, Universitat de València (Spain), http://www.uv.es/uvweb/analytical-chemistry-department/en/administrative-technical-staff/organisation-chart-1285859984083.html

Title: Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201404522

Antonio Doménech-Carbó | Angewandte Chemie

Further reports about: Dating X-ray ageing archaeological artificial copper damage electrode microparticles

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>