Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data on the regulation of a protein that is altered in all cancers

21.04.2010
The group led by Marco Milan, researcher at IRB Barcelona, discovers that microRNAs control the levels of the oncoprotein Myc in Drosophila

In all cancers, whether in kidney, breast, lung, colon, skin or any other tissue, cells show high Myc protein levels. Excess Myc causes cells to multiply in an exaggerated manner, giving rise to the development of tumours.

One of the most pressing questions about Myc is how healthy cells keep the expression of this protein in check. In a study using the Drosophila, researchers at the Institute for Research in Biomedicine (IRB Barcelona) headed by ICREA scientist Marco Milán have discovered that the microRNA machinery controls the levels of Myc through the molecule Mei-P26, thereby conferring microRNAs unexpected importance.

The study is published this week in EMBO Journal, a scientific journal of high impact in basic biomedical research that belongs to the Nature group.

MicroRNAs (miRNAs) are small molecules that account for less than 1% of the human genome; however, they play a key role in cell function because they have the capacity to disable or modify a great number of genes. High levels of certain miRNAs cause cancer. In previous studies conducted in mice, it was demonstrated that the Myc protein controls the expression levels of miRNAs. Now scientists have discovered in Drosophila that miRNAs affect the levels of Myc. "We propose that there is a finely tuned mechanism by which miRNAs and Myc are mutually controlled", explains Milán. The researchers suggest that the cell uses this mechanism to maintain optimal levels of miRNA and Myc, indispensable for the proper functioning of the organism, while preventing their becoming dangerous.

Mei-P26, the key component

The researchers discovered this new regulatory mechanism by removing Drosophila's 150 miRNAs from a developing wing. Without miRNAs, they obtained a tissue with similar characteristics to that attained when Myc is removed: the wing is smaller and the cells are also smaller and do not divide well. "Myc is like an orchestra conductor that guides the growth of tissue, including healthy tissue, and since the wing characteristics in both cases were similar, we thought that the miRNAs and Myc were related; and we were right", explains Héctor Herranz, post-doc researcher fellow in Milan's lab and first author of the article.

The dissection of the molecular mechanism revealed that the key piece in the regulation of Myc by miRNAs is Mei-P26, a molecule known to target Myc in mice. Cells lacking miRNAs show increased Mei-P26 levels and decreased Myc expression. "We have closed the circle of this regulatory mechanism, positioning the miRNAs in the diagram".

Given that miRNAs, Mei-p26 and Myc have homologues in mice and humans, and alterations in the expression of these homologues cause tumours, the researchers propose that this same regulatory mechanism of Myc could be present in higher organisms. Confirmation of this notion would open up new avenues in the study of cancer.

Reference article: The miRNA machinery targets Mei-P26 and regulates Myc proteína levels in the Drosophila wing.
Héctor Herranz, Xin Hong, Lidia Pérez, Ana Ferreira, Daniel Oliveiri, Stephen M Cohen and Marco Milán.
EMBO Journal (2010) doi: 10.1038/emboj.2010.69

Sonia Armengou | EurekAlert!
Further information:
http://www.irbbarcelona.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>