Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data on the regulation of a protein that is altered in all cancers

21.04.2010
The group led by Marco Milan, researcher at IRB Barcelona, discovers that microRNAs control the levels of the oncoprotein Myc in Drosophila

In all cancers, whether in kidney, breast, lung, colon, skin or any other tissue, cells show high Myc protein levels. Excess Myc causes cells to multiply in an exaggerated manner, giving rise to the development of tumours.

One of the most pressing questions about Myc is how healthy cells keep the expression of this protein in check. In a study using the Drosophila, researchers at the Institute for Research in Biomedicine (IRB Barcelona) headed by ICREA scientist Marco Milán have discovered that the microRNA machinery controls the levels of Myc through the molecule Mei-P26, thereby conferring microRNAs unexpected importance.

The study is published this week in EMBO Journal, a scientific journal of high impact in basic biomedical research that belongs to the Nature group.

MicroRNAs (miRNAs) are small molecules that account for less than 1% of the human genome; however, they play a key role in cell function because they have the capacity to disable or modify a great number of genes. High levels of certain miRNAs cause cancer. In previous studies conducted in mice, it was demonstrated that the Myc protein controls the expression levels of miRNAs. Now scientists have discovered in Drosophila that miRNAs affect the levels of Myc. "We propose that there is a finely tuned mechanism by which miRNAs and Myc are mutually controlled", explains Milán. The researchers suggest that the cell uses this mechanism to maintain optimal levels of miRNA and Myc, indispensable for the proper functioning of the organism, while preventing their becoming dangerous.

Mei-P26, the key component

The researchers discovered this new regulatory mechanism by removing Drosophila's 150 miRNAs from a developing wing. Without miRNAs, they obtained a tissue with similar characteristics to that attained when Myc is removed: the wing is smaller and the cells are also smaller and do not divide well. "Myc is like an orchestra conductor that guides the growth of tissue, including healthy tissue, and since the wing characteristics in both cases were similar, we thought that the miRNAs and Myc were related; and we were right", explains Héctor Herranz, post-doc researcher fellow in Milan's lab and first author of the article.

The dissection of the molecular mechanism revealed that the key piece in the regulation of Myc by miRNAs is Mei-P26, a molecule known to target Myc in mice. Cells lacking miRNAs show increased Mei-P26 levels and decreased Myc expression. "We have closed the circle of this regulatory mechanism, positioning the miRNAs in the diagram".

Given that miRNAs, Mei-p26 and Myc have homologues in mice and humans, and alterations in the expression of these homologues cause tumours, the researchers propose that this same regulatory mechanism of Myc could be present in higher organisms. Confirmation of this notion would open up new avenues in the study of cancer.

Reference article: The miRNA machinery targets Mei-P26 and regulates Myc proteína levels in the Drosophila wing.
Héctor Herranz, Xin Hong, Lidia Pérez, Ana Ferreira, Daniel Oliveiri, Stephen M Cohen and Marco Milán.
EMBO Journal (2010) doi: 10.1038/emboj.2010.69

Sonia Armengou | EurekAlert!
Further information:
http://www.irbbarcelona.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>