Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data on the breakdown of the KRas protein

22.04.2009
KRas is one of the usual suspects in cancer. It is a protein that is mutated in 30% of human tumors and has been implicated in the regulation of many cell signalling pathways.

For this reason, it is one of the main focuses of attention of international basic research and it is difficult to publish new information relating to its molecular biology.

Researchers from the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and the University of Barcelona (UB) have discovered a new breakdown pathway for this protein. The results, which could mean a new form of signalling involving KRas, were published in the latest edition of the Journal of Cell Biology (184(6):863-79), where they merited an appearance on the front page of the journal and an editorial comment.

This study is part of the doctoral thesis of Dr. Albert Lu and includes the participation of Dr. Oriol Bachs, Dr. Carles Enrich, Dr. Neus Agell and Dr. Francesc Tebar, researchers from IDIBAPS and the Department of Cell Biology, Immunology and Neuroscience of the Faculty of Medicine of the University of Barcelona. Researchers from the University of Kyoto also took part in the study.

The article describes how the KRas protein is actively transported from the cell membrane, where most of its known activity takes place, to the lysosomes. The lysosomes are organelles responsible for breaking down proteins; this breakdown pathway was unknown in the case of KRas. Thanks to videomicroscopy techniques using a confocal microscope and the fluorescence, resonance energy transfer (FRET) technique, the researchers have observed how the protein is brought inside the cell and transported to the lysosomes. The protein remains active during this journey through the interior of the cell, which leads to the suspicion that it continues to exercise its influence on signalling pathways relating to cell proliferation and the appearance of cancers.

The signalling pathways activated by KRas are highly complex. With the newly available data, it will be necessary to investigate whether the signals emitted on the way to the lysosomes have a different meaning for the cell than those generated from the membrane, the protein’s usual site of action.

These results provide clues to stimulating the elimination of KRas, a line of research that might result in new therapeutic strategies against cancer and diseases in which the formation of lysosomes is abnormal, such as Niemann-Pick disease. KRas is already used in the diagnosis of diseases such as colon, lung and breast cancer. The better we understand its biology, the more we will know about how it appears and how this and other diseases can be combatted.

Alex Argemi | EurekAlert!
Further information:
http://www.clinic.ub.es

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>