Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth scientists discover method to potentially repair nerve damage

22.01.2016

Nerve damage from neurodegenerative disease and spinal cord injury has largely been considered irreversible, but Dartmouth researchers report progress in the effort to synthesize rare natural products that promote regeneration and growth of injured nerve cells.

Neurotrophins, or proteins that promote the development of neurons, have been investigated as potential therapeutic agents, but they have a variety of drawbacks. A group of small molecule natural products, however, possesses potent neurotrophic properties without some of the shortcomings of protein-based agents.


Dartmouth Professor Glenn Micalizio's new research advances the effort to synthesize rare natural products that promote regeneration and growth of injured nerve cells.

Credit: Dartmouth College

Unfortunately, a source of suitable quantities of these substances to enable thorough medicinal exploration has yet to be identified. As such, the development of synthetic processes to generate molecules in this class (and related unnatural analogs) is critically important to establish science capable of fueling the discovery of therapeutic agents within the class.

That said, many member of this natural product class boast very complex carbocyclic structures that have stood as substantial challenges to modern synthetic chemistry.

Now, Dartmouth researchers have discovered that one of their recently discovered chemical reactions is capable of delivering some of the most potent and rare members of this natural product class.

Their pursuits resulted in the laboratory preparation of three neurotrophic natural products in the class and demonstrated the first application of their new carbocycle-forming reaction in natural product synthesis.

In addition to these accomplishments, the researchers' study also led to the discovery of a new radical cascade reaction process that proved instrumental for completing their laboratory syntheses of these complex agents.

"Advances of this nature are critically important for defining a foundation of science necessary for advancing rare natural products as therapeutic agents," says co-author and principal investigator Glenn Micalizio, the New Hampshire Professor of Chemistry at Dartmouth College.

"Simply stated, without a synthetic means to access such agents, development of therapeutics based on their structure would not be possible. While other syntheses of natural products within this class have recently been reported by others, our current achievement defines a unique synthesis pathway that could be employed to prepare synthetic analogs not easily accessed by others. Also, this marks the first successful application of our chemical method for hydrindane synthesis in the context of natural product synthesis."

The findings appear in the Journal of the American Chemical Society. A PDF is available on request.

###

The research was supported by the National Institutes of Health.

Professor Glenn Micalizio is available to comment at Glenn.C.Micalizio@dartmouth.edu.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://communications.dartmouth.edu/media/broadcast-studios

Media Contact

John Cramer
john.cramer@dartmouth.edu
603-646-9130

 @dartmouth

http://www.dartmouth.edu 

John Cramer | EurekAlert!

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>