Curcumin shows promise in attacking Parkinson’s disease

A team of researchers led by Basir Ahmad, an MSU postdoctoral researcher, demonstrated earlier this year that slow-wriggling alpha-synuclein proteins are the cause of clumping, or aggregation, which is the first step of diseases such as Parkinson’s. A new study led by Ahmad, which appears in the current issue of the Journal of Biological Chemistry, shows that curcumin can help prevent clumping.

“Our research shows that curcumin can rescue proteins from aggregation, the first steps of many debilitating diseases,” said Lisa Lapidus, MSU associate professor of physics and astronomy who co-authored the paper with Ahmad. “More specifically, curcumin binds strongly to alpha-synuclein and prevents aggregation at body temperatures.”

Lapidus’ lab uses lasers to study protein folding. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don’t know how they are built – a process known as folding. Lapidus’ team is shedding light on the process by correlating the speed at which protein folds with its tendency to clump or bind with other proteins.

When curcumin attaches to alpha-synuclein it not only stops clumping, but it also raises the protein’s folding or reconfiguration rate. By bumping up the speed, curcumin moves the protein out of a dangerous speed zone allowing it to avoid clumping with other proteins.

Finding a compound that can fix a protein when it first begins to misfold can lead scientists to identify drugs that can treat certain diseases. Doctors won’t be prescribing curcumin pills any time soon, though, Lapidus said.

“Curcumin’s usefulness as an actual drug may be pretty limited since it doesn't go into the brain easily where this misfolding is taking place,” she said. “But this kind of study showcases the technique of measuring reconfiguration and opens the door for developing drug treatments.”

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Media Contact

Layne Cameron EurekAlert!

More Information:

http://www.msu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors