Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder team identifies DNA 'barcodes' to help track illegal trading of wildlife products

17.09.2009
Researchers from several institutions including the University of Colorado at Boulder have sequenced DNA "barcodes" for as many as 25 hunted wildlife species, providing information that can be used to better monitor the elusive trade of wildlife products, or bushmeat.

Identifying such DNA barcodes can help wildlife officials crack down on illegal bushmeat trafficking since many animal species are in sharp decline from illegal trade estimated to be worth $5 billion to $8 billion annually, said Andrew Martin, CU-Boulder associate professor of ecology and evolutionary biology and a study co-author. Barcodes also can help monitor legal harvest of tropical animals as researchers often use the composition of species in markets as an indication of the health of the wildlife community in forests.

"It's a really amazing study in which science brings together cultures and 
people living on separate continents faced with very different challenges," said 
Martin. "Barcoding is an essential tool for the identification of natural products and is becoming the technique of choice for monitoring wildlife trade. The ultimate goal is to have barcodes for every animal on the planet."

The DNA barcodes generated from the study have been added to an online, open-access repository called the Barcode of Life Data Systems and to the National Center for Biotechnology Information's GenBank library.

A paper of the findings was published in the September online edition of Conservation Genetics.

The DNA barcode system is valuable for its precision at the level of species, according to researchers. Without it, processed and prepared meats, hides and other goods are often unidentifiable once they reach the marketplace.

Enforcing wildlife laws such as those imposed by the Convention on the International Trade of Endangered Species or the U.S. Endangered Species Act will still be very difficult, or inefficient at best, said Martin. Suspected contraband must be confiscated and sent to a laboratory for gene sequencing, which typically requires days for results.

The team of scientists from CU-Boulder, Barnard College and the American Museum of Natural History used a region of a mitochondrial gene known as COX1 to generate DNA barcodes of 25 commonly traded mammal and reptile species in Africa, Central and South America. The study included Old World monkeys, alligators, crocodiles, antelope and wild pigs.

The COX1 gene is agreed upon by scientists as a viable segment of the genome to use in barcoding, said Martin. The COX1 gene is a relatively small DNA segment in which mutation is rapid enough to distinguish closely related species but also slow enough that individuals within the same species have similar barcodes.

Research took place at CU-Boulder laboratories, the American Museum of Natural History in New York and in the field with the collection of hundreds of blood and tissue samples. The U.S. Fish and Wildlife Service also provided specimens from confiscations of leather handbags, belts and shoes.

Mitchell Eaton, who led the research as a doctoral student at CU-Boulder, said technologies to support rapid or automated DNA barcoding have yet to be developed but the first step is for scientists to build a catalog of barcodes. "This is not something where you can wave a scanner over a piece of meat in an airport to know the animal's identity, that kind of technology is well into the future."

Eaton is now affiliated with the Patuxent Wildlife Research Center of the U.S. Geological Survey.

Monitoring illegal wildlife trafficking is not the only purpose of DNA barcodes. The codes also can furnish information on diversity in ecosystems, invasive species, pathogens in food supplies and the impact hunting by humans has on forest wildlife, according to the researchers.

"Much of the wildlife harvest in tropical countries is legal and supports rural inhabitants who have few other options for obtaining protein," said Eaton. "Because subsistence harvest and the more insidious forms of commercial hunting are both largely unregulated, ecologists and conservationists would like to better understand the extent and impact of the use of wildlife resource in these regions."

"Collecting samples for genetic barcoding will provide a means for more accurate species identification and a better understanding of hunting impacts on species abundance and composition," said Eaton.

The DNA barcoding in the study was successful enough to individually identify closely related species that previously had been lumped together, said Martin. The team is hoping to modify the length of barcode sequences to increase the success rate of species identification from processed leather products, which is currently a challenge due to high levels of DNA degradation.

Andrew Martin | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>