Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crowd-sourcing the E. coli O104:H4 outbreak

05.09.2011
Ten variants of the deadly Escherichia coli strain that hit Germany in May 2011 have been sequenced across the world.

The unprecedented level of collaboration across the scientific community should give insight into how the outbreak arose, says a scientist at the Society for General Microbiology's Autumn Conference 2011.

Sequencing of the bacterium started in early June at BGI, China. Their sequence was provided in draft form to the scientific community as a crowd-sourcing project. This allowed scientists, including those at The Genome Analysis Centre (TGAC) in Norwich to identify key disease-causing genes. Dr Lisa Crossman, Microbial Genome Project Leader at TGAC, explained, "We have found that the E. coli strain responsible for the outbreak carries a very high number of genes known to be involved in disease. These include genes that influence the bacterium's ability to attach to surfaces and survival genes that increase tolerance to high acidity, low oxygen, UV light and antibiotics."

The outbreak of E. coli O104:H4 resulted in a large number of cases of bloody diarrhoea and haemolytic uraemic syndrome (HUS) in Germany, and in 15 other countries in Europe and North America. The earliest studies suggested contaminated cucumbers were to blame. However by 10 June, raw beansprouts were identified as the source of infection. Over 4,000 cases and around 50 deaths have occurred so far across 16 countries in Europe and North America. The outbreak has also had a very high economic impact on the fresh vegetable market, especially in Spain and across Europe.

Crowd-sourcing researchers found that the outbreak strain is most closely related to a strain of E. coli originally isolated in Central Africa some years ago, which was responsible for cases of serious diarrhoea. "The E. coli O104:H4 outbreak strain has gained the ability to make a toxin from a bacterial virus source which has made it more dangerous," explained Dr Crossman.

The unprecedented global crowd-sourcing effort meant that in the very immediate term, doctors were able to distinguish this strain from others, said Dr Crossman. "Knowing which antibiotic resistance genes are carried by the strain, for example, can provide us with more insight into the source of the outbreak and help us avoid similar outbreaks occurring in the future," she said.

Institutions around the world have now isolated ten different variants of E. coli O104:H4. "These variants represent a tremendous resource to examine this bug in a new, rapid and exciting way. By studying the genetic factors involved in the survival of this bacterium on surfaces, we hope to get an angle on how this organism has been able to get a foothold in the global food chain," suggested Dr Crossman.

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

Further reports about: Crowd-sourcing E. coli General Microbiology Genom O104 TGAC outbreak strain

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>