Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crosstalk between critical cell-signaling pathways holds clues to tumor invasion and metastasis

26.11.2009
M. D. Anderson-led team connects the dots among three distinct components of cancer development, potentially pointing the way to new therapeutic strategies

Two signaling pathways essential to normal human development - the Wnt/Wingless (Wnt) and epidermal growth factor receptor (EGFR) pathways - interact in ways that can promote tumor cell invasion and metastasis, researchers from The University of Texas M. D. Anderson Cancer Center report in the Nov. 25 issue of Molecular Cell.

This newly characterized interaction involves three signaling components known to correlate with invasive cancer - activation of EGFR, elevated protein kinase CK2 activity, and increased beta-catenin - T-cell factor/lymphoid enhancer factor (TCF/LEF-1) transcriptional activity.

"These findings highlight the importance of Wnt-independent and non-canonical activation of beta-catenin in tumor development," said senior author Zhimin Lu, MD, PhD, an associate professor in M. D. Anderson's Department of Neuro-Oncology. They also open up new possibilities for biomarkers that indicate prognosis or guide treatment.

Wnt Signaling and Cell-to-Cell Adhesion

Cell signaling is an intricate and precise process that enables cells to grow, differentiate (become specialized) and ultimately die (apoptosis). This orderly process is responsible for the normal development of organs and tissues. Alterations in the signaling within cells and between cells, however, can disrupt the cell-to-cell contact that helps keeps tumor cells in place. Loss of cell-to-cell contact leads to tumor cell migration, invasion and metastasis.

The Wnt signaling pathway plays a critical role in cell development, proliferation and differentiation. Mutations in this important pathway leading to the activation of beta-catenin are responsible for many types of cancer, including colon cancer. However, beta-catenin can also be activated in a mutation-independent manner in other cancers.

A key component of the Wnt pathway, beta-catenin combines with alpha-catenin and regulates cell-cell adhesion. It also interacts with alpha-catenin in the nucleus.

The alpha-catenin component of this beta-catenin/alpha-catenin complex has an inhibitory effect on beta-catenin that helps keep tumor cell migration and invasion in check. This inhibition is lost, however, when the EGFR pathway is activated. Upon activation, beta-catenin becomes untethered from alpha-catenin and translocates to the cell nucleus, where it increases expression of key target genes involved in tumor cell invasion and metastasis.

New Pathway Regulates Beta-Catenin Transactivation

The M. D. Anderson-led team made a surprising discovery: Beta-catenin also can travel to the nucleus via activation of the EGFR pathway-and it does so independently of Wnt signaling or mutations. The newly described pathway disrupts the beta-catenin/alpha catenin complex through an EGFR-extracellular receptor kinase (ERK)-protein kinase CK2- phosphorylation cascade. The investigators noted that this cascade culminates in the phosphorylation of alpha-catenin and ultimately promotes beta-catenin activation in the nucleus and subsequent tumor cell invasion.

The researchers found evidence of the newly identified pathway's clinical relevance when they examined human glioblastoma specimens. Specifically, levels of alpha-catenin phosphorylation correlated with levels of ERK activity and with grades of malignancy.

"Taken together, these findings demonstrate the importance of this pathway in tumor formation and progression," Dr. Lu said, "and they reveal potential markers for prognosis and therapeutics." Dr. Lu's lab is currently identifying genes downstream from beta-catenin that may be instrumental in tumor progression.

This research was supported by an American Cancer Society Research Scholar Award and grants from the Brain Tumor Society and Phi Beta Psi Sorority, an institutional research grant from M. D. Anderson Cancer Center; and a National Cancer Institute grant, all awarded to Lu.

Co-authors with Dr. Lu are Haitao Ji, Ph.D., of M. D. Anderson's Brain Tumor Center and Department of Neuro-Oncology and the Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, China ; Xuexun Fang, Ph.D., also of the Key Laboratory for Molecular Enzymology; Ji Wang and Bingliang Fang, M.D., Ph.D., of M. D. Anderson's Department of Thoracic and Cardiovascular Surgery; Heinz Nika and David Hawke of M. D. Anderson's Department of Molecular Pathology; Susan Keezer and Qingyuan Ge, Ph.D., of Cell Signaling Technology, Inc., Danvers, Massachusetts; David W. Litchfield, Ph.D., of the Departments of Biochemistry and Oncology, University of Western Ontario, London, Ontario, Canada; and Kenneth Aldape, M.D., of M. D. Anderson's Department of Pathology.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>