Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical viewing

19.07.2010
The maturation of inhibitory synapses in the visual cortex is modulated by visual experience

Sensory experience changes the way humans see the world during early postnatal development. Now, an international team of researchers, including Tadaharu Tsumoto from the RIKEN Brain Science Institute in Wako, may have an explanation.

They report in the journal Neuron that visual experience drives the maturation of inhibitory synapses in the visual cortex during a critical period of early postnatal development by activating endocannabinoid receptors1. “This maturation makes synaptic transmission more reliable,” explains Tsumoto. These findings may be crucial to understanding the changes in the way the brain processes visual information from early postnatal life to puberty.

The researchers electrically stimulated the visual cortex and measured the resulting inhibitory currents in the superficial layer of visual cortex slices from 3-week-old rats, a time during development soon after the initial opening of the eyes. High-frequency stimulation of the slices—similar to input that visual cortex neurons may receive during visual experience—led to a long-lasting drop in the amount of inhibitory current that the stimulation could elicit. This is called long-term depression of inhibitory currents (iLTD). Tsumoto and colleagues could not induce iLTD in the visual cortex of 5-week-old rats, a stage in development akin to puberty. The researchers therefore realized that there was a ‘critical period’ for the induction of visual cortex iLTD that occurred after eye opening.

Interestingly, Tsumoto and colleagues were able to delay the onset of the critical period by raising the rats in darkness, and even brief exposure of dark-reared rats to light induced the loss of iLTD in the visual cortex. The research team realized that visual experience therefore plays an important role in regulating the timing of the critical period.

Endocannabinoids are signaling molecules that regulate neuronal activity throughout the nervous system. The researchers showed that a drug that activates endocannabinoid receptors can induce the loss of iLTD in the visual cortex in dark-reared animals that would normally still exhibit iLTD, while a drug that blocks endocannabinoid signaling could inhibit the loss of iLTD that is normally induced by light. This suggested to Tsumoto and colleagues that visual experience drives endocannabinoid signaling to induce iLTD during visual cortex development.

The researchers argue that endocannabinoid-mediated iLTD seems to be important for the maturation of inhibitory synapses that occurs during development of the visual cortex. Tsumoto suggests that this maturation could help to “make responses of neurons in the visual cortex selective to a particular feature of visual stimuli,” such as orientation of contours or direction of movement.

The corresponding author for this highlight is based at the Laboratory for Cortical Circuit Plasticity, RIKEN Brain Science Institute

Journal information

Jiang, B., Huang, S., de Pasquale, R., Millman, D., Lee, H.-K., Tsumoto, T. & Kirkwood, A. The maturation of GABAergic transmission in visual cortex requires endocannabinoid-mediated LTD of inhibitory inputs during a critical period. Neuron 66, 248–259 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>