Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical viewing

19.07.2010
The maturation of inhibitory synapses in the visual cortex is modulated by visual experience

Sensory experience changes the way humans see the world during early postnatal development. Now, an international team of researchers, including Tadaharu Tsumoto from the RIKEN Brain Science Institute in Wako, may have an explanation.

They report in the journal Neuron that visual experience drives the maturation of inhibitory synapses in the visual cortex during a critical period of early postnatal development by activating endocannabinoid receptors1. “This maturation makes synaptic transmission more reliable,” explains Tsumoto. These findings may be crucial to understanding the changes in the way the brain processes visual information from early postnatal life to puberty.

The researchers electrically stimulated the visual cortex and measured the resulting inhibitory currents in the superficial layer of visual cortex slices from 3-week-old rats, a time during development soon after the initial opening of the eyes. High-frequency stimulation of the slices—similar to input that visual cortex neurons may receive during visual experience—led to a long-lasting drop in the amount of inhibitory current that the stimulation could elicit. This is called long-term depression of inhibitory currents (iLTD). Tsumoto and colleagues could not induce iLTD in the visual cortex of 5-week-old rats, a stage in development akin to puberty. The researchers therefore realized that there was a ‘critical period’ for the induction of visual cortex iLTD that occurred after eye opening.

Interestingly, Tsumoto and colleagues were able to delay the onset of the critical period by raising the rats in darkness, and even brief exposure of dark-reared rats to light induced the loss of iLTD in the visual cortex. The research team realized that visual experience therefore plays an important role in regulating the timing of the critical period.

Endocannabinoids are signaling molecules that regulate neuronal activity throughout the nervous system. The researchers showed that a drug that activates endocannabinoid receptors can induce the loss of iLTD in the visual cortex in dark-reared animals that would normally still exhibit iLTD, while a drug that blocks endocannabinoid signaling could inhibit the loss of iLTD that is normally induced by light. This suggested to Tsumoto and colleagues that visual experience drives endocannabinoid signaling to induce iLTD during visual cortex development.

The researchers argue that endocannabinoid-mediated iLTD seems to be important for the maturation of inhibitory synapses that occurs during development of the visual cortex. Tsumoto suggests that this maturation could help to “make responses of neurons in the visual cortex selective to a particular feature of visual stimuli,” such as orientation of contours or direction of movement.

The corresponding author for this highlight is based at the Laboratory for Cortical Circuit Plasticity, RIKEN Brain Science Institute

Journal information

Jiang, B., Huang, S., de Pasquale, R., Millman, D., Lee, H.-K., Tsumoto, T. & Kirkwood, A. The maturation of GABAergic transmission in visual cortex requires endocannabinoid-mediated LTD of inhibitory inputs during a critical period. Neuron 66, 248–259 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>