Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creation of two French-Chinese International Associated Laboratories in chemistry

15.12.2008
CNRS and its French partners have just signed into existence two International Associated Laboratories (LIA) with China: the Matériaux organophosphorés fonctionnels laboratory and the French-Chinese catalysis laboratory.

CNRS, Université de Rennes 1 and Zhengzhou University (in Henan province) have created the International Associated Laboratory "Matériaux organophosphorés fonctionnels" (LIA MOF).

This LIA brings together the Sciences chimiques de Rennes (1) laboratory and a Chinese laboratory, International Phosphorus Laboratory, which is already headed by a CNRS researcher, François Mathey. The objective of the association is to synthesize new phosphorus compounds for future developments in plastic electronics (flat screens, cellphones...).

The two teams involved in the project have complementary know-how in thie field: François Mathey's team in Zhengzhou has vast experience in the synthesis, property analysis and reactivity of complex phosphorus derivatives. Régis Réau's team in Rennes has expertise in the synthesis and physico-chemical study of polymers and metal compounds incorporating phosphorus units. Their association will enable the LIA to move into a leading position internationally in this rapidly evolving research field.

The French Chinese catalysis laboratory is also becoming an International Associated Laboratory, called LIA LFCC. This LIA brings together CNRS, Université Claude Bernard of Lyon-Lyon 1, Dalian Institute of Chemical Physics (DICP, Chinese Academy of Science) and a Chinese industrial partner, the Research Institute of Petroleum Processing (RIPP). This LIA involves three main partners: the State Key Laboratory of Catalysis in Dalian, the RIPP laboratory in Beijing and the Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON, CNRS / Université de Lyon 1). The research concerns catalysis for energy and hydrotreatment.

(1) CNRS / Université Rennes 1 / Ecole nationale supérieure de chimie de Rennes / INSA Rennes joint unit

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>