Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating new healthy ingredients by innovative milling techniques and processes for cereal grains

05.05.2010
The bioactive compounds of cereals are concentrated in the peripheral layers of the grains (bran) but most of them have a low bio-accessibility. In the HEALTHGRAIN project of the European Union, new tools for process monitoring were developed that support commercial implementation of innovative milling techniques including partial grain debranning, fine grinding and classification of grain fractions, resulting in flours and ingredients with enhanced nutritional properties.

The wheat grain is a heterogeneous structure with bio-active compounds unevenly distributed within its different parts. The bioactive compounds (fibres, micronutrients and phytochemicals) are mostly concentrated in the grain outer layers, each having its own compositional profile.

Therefore levels of bioactive compounds in whole meal flour are at least two times higher than those in white flour. However, some of the bioactive compounds have a low bio-accessibility in peripheral layers as they are trapped in strong cell wall structures which resist conventional milling. They can also be localized close to undesirable contaminants such as microbes, mycotoxins, pesticide residues, heavy metals. Therefore novel technologies have been developed for the transformation of the grains to better exploit their nutritional potential and to ensure food safety requirements.

In order to develop new dry processing techniques, new tools based on new insights in grain tissue composition, structure and properties have been obtained. Biochemical markers of the different grain tissues (pericarp, intermediate layers, aleurone layers, germ) have been identified and allow to determine the tissue composition of the technological fractions and deduce the behaviour of the different grain parts upon fractionation operations. More rapid methods for fractionation monitoring using spectral signature of tissues are on the way. New mechanical devices coupled with microscopy and microspectroscopy have been developed to determine the local properties of tissues and of their interfaces to help the development of fractionation with improved resolution. Especially, the effects of temperature, water content and enzymatic pre-treatments have been investigated.

A way to enrich cereal products with bioactive compounds is to manufacture flours with high levels of selected parts of the outer layers. To remove the very outermost layers, partial debranning of grains in using friction (peeling) or abrasion (pearling), was combined with milling (grinding and sieving) to produce flours with tailored tissue composition and thus controlled in content of bioactive compounds, as monitored by the marker methodology. Flours made from peeled grains, peeled and pearled grains and grains with removed outermost layer and crease parts exhibited high contents of bioactive compounds and improved nutritional effects as compared to common flours.

Another way of exploiting cereal potential is to use the miller's bran, a by-product of the milling industry, as a source of healthy ingredients. Careful limited grinding and sieving of the bran allowed to prepare a concentrate of aleurone cells and aleurone layer, where most of the bioactive compounds of the grain are located. Further purification by electrostatic classification yielded practically pure aleurone cells that exhibited excellent nutritional properties.

Another approach used ultrafine grinding of the bran in ambient or cryogenic conditions, to provoke a full dissociation of the material at a sub-cellular level. This resulted in an increase in bioactive compounds bioaccessibility. Classification of the fine particles in using a electrostatic separator made it possible to prepare fractions of very contrasted compositions in starting from bran. One of these ingredients, concentrated in fine aleurone particles, showed a good accessibility of anti-oxidants and mineral compared to bran and untreated aleurone. These technologies have been experimented at large-scale by industrial partners, to determine their feasibility and economics.

The work was conducted by INRA, in close collaboration with difent partners in charge of analyses (VTT, KU Leuven, University of Helsinki, University of Uppsala, Puratos, TNO), development of analytical equipment (Branscan) and industrial demonstration and cost evaluation (Barilla, Buhler, SD-Tech).

The EU Integrated Project HEALTHGRAIN: The HEALTHGRAIN project has substantially strengthened the scientific basis for a new generation of cereal based products with enhanced health benefits. The project also has formed a network of research organizations, industries and organizations communicating to consumers that will continue as the HEALTHGRAIN Forum. It has been coordinated by Academy Professor Kaisa Poutanen from VTT Technical Research Centre of Finland. Results of the project will be presented in the HEALTHGRAIN Conference on May 5-7 in Lund, Sweden: www.healthgrain.org

INRA: Ranked the number one agricultural institute in Europe and number two in the world, INRA carries out mission-oriented research for high-quality and healthy foods, competitive and sustainable agriculture and a preserved and valorised environment.

Barilla: Barilla was founded in Parma back in 1877, as a small shop of bread and pasta, opened by Pietro Barilla. For over 130 years it has been guided by the entrepreneurial experience of a family that, with the advent of the siblings Guido, Luca, Paolo and Emanuela, has been at the helm for four generations. Today Barilla Group produces and sells, at international level, pasta, pasta sauces and bakery products. Current organizational structure is based on Barilla G&R. Fratelli, Harry's and Lieken, together with their subsidiaries. Nowadays, Barilla operates directly in more than 20 countries and exports its products to over 100 countries. It owns 54 production facilities in 10 countries and has more than 15,000 employees.

Buhler: Buhler is market leader in grain processing technologies and speciality milling with a strong focus on innovative processes for healthier grain fractions and ingredients for their customers in the grain processing industry world-wide. Buhler is present in more than 140 countries.

SD-Tech: SDTech is an industrial company specialising in the custom micronization and analysis of ultra-fine powders. SDTech delivers Process Expert services to various industries. SDTech offers its expertise for customized services in various areas such as custom milling (dry and wet processes), sieving, mixing and powder analysis.

Key references:

Barron, C., Surget, A. and Rouau, X. Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. Journal of Cereal Science 2007, 45, 88-96.

Hemery, Y.; Rouau, X.; Lullien-Pellerin, V.; Barron, C.; Abecassis, J. Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science 2007, 46, 327-347.

Hemery Y.M., Lullien-Pellerin V., Rouau X.,Abécassis J., Samson M.F., Åman P., von Reding W., Spoerndli C.and Barron C. Biochemical markers: efficient tools for the assessment of wheat grain tissue proportions in milling fractions. Journal of Cereal Science. 2009, 49, 45-64.

Further information:

INRA, UMR Agropolymer Engineering and Emerging Technologies, Montpellier, France
Xavier Rouau, Joel Abecassis, Cécile Barron
Tel ; + 33 4 99 61 44 77, rouau@supagro.inra.fr, abecassi@supagro.inra.fr, barron@supagro.inra.fr
Barilla G. e R. Fratelli Società per Azioni, Italy
Roberto Ranieri, Giovanni Tribuzio, Michela Petronio
Tel: +39 0521 263002, r.ranieri@barilla.it, g.tribuzio@barilla.it, m.petronio@barilla.it
Buhler AGCorporate Development Nutrition Solutions, Switzerland
Walter von Reding
Tel: + 41 71 955 12 55
walter.vonreding@buhlergroup.com
SD-Tech
3 rue de la Bergerie
30100 ALES, France
David Bordeaux, Jalil Benabdillah
Tel : + 33 4 66 61 36 00
contact@sd-tech.com

Xavier Rouau | EurekAlert!
Further information:
http://www.healthgrain.org
http://www.supagro.inra.fr

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>