Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Crankcase to Gas Tank: New Microwave Method Converts Used Motor Oil Into Fuel

30.03.2011
That dirty motor oil that comes out of your car or truck engine during oil changes could end up in your fuel tank, according to a report presented here today at the 241st National Meeting & Exposition of the American Chemical Society (ACS). It described development of a new process for recycling waste crankcase oil into gasoline-like fuel — the first, they said, that uses microwaves and has “excellent potential” for going into commercial use.

“Transforming used motor oil into gasoline can help solve two problems at once,” said study leader Howard Chase, Professor of Biochemical Engineering at the University of Cambridge in the United Kingdom. “It provides a new use for a waste material that’s too-often disposed of improperly, with harm to the environment. In addition, it provides a supplemental fuel source for an energy-hungry world.”

Estimates suggest that changing the oil in cars and trucks produces about 8 billion gallons of used motor oil each year around the world. In the United States and some other countries, some of that dirty oil is collected and re-refined into new lubricating oil or processed and burned in special furnaces to heat buildings. Chase noted, however, that such uses are far from ideal because of concerns over environmental pollution from re-refining oil and burning waste oil. And in many other countries, used automotive waste oil is discarded or burned in ways that can pollute the environment.

Scientists thus are looking for new uses for that Niagara of waste oil, growing in volume as millions of people in China, India, and other developing countries acquire cars. Among the most promising recycling techniques is pyrolysis, a process that involves heating oil at high temperatures in the absence of oxygen. Pyrolysis breaks down the waste oil into a mix of gases, liquids, and a small amount of solids. The gases and liquids can then be chemically converted into gasoline or diesel fuel. However, the current processes heat the oil unevenly, producing gases and liquids not easily converted into fuel.

Chase and his research team say the new method overcomes this problem and uses their new pyrolysis technology. In lab studies, his doctoral students, Su Shiung Lam and Alan Russell, mixed samples of waste oil with a highly microwave-absorbent material and then heated the mixture with microwaves. The pyrolysis process appears to be highly efficient, converting nearly 90 percent of a waste oil sample into fuel. So far, the scientists have used the process to produce a mixture of conventional gasoline and diesel.

“Our results indicate that a microwave-heated process shows exceptional promise as a means for recycling problematic waste oil for use as fuel,” Chase and Lam said. “The recovery of valuable oils using this process shows advantage over traditional processes for oil recycling and suggests excellent potential for scaling the process to the commercial level.”

The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | Newswise Science News
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

The world's tiniest first responders

21.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>