Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coupling Around

07.07.2011
Fused indolines made by asymmetrical carbon–carbon coupling

Many drugs are based on natural substances. Because it is usually difficult, if not impossible, to isolate these in sufficient quantities from plants or microorganisms, they must be synthesized in the laboratory.

This requires linking carbon atoms – with the right spatial orientation (stereochemistry) relative to each other. In the journal Angewandte Chemie, E. Peter Kündig and a team from the University of Geneva (Switzerland) have now introduced a palladium-catalyzed synthesis that allows them to produce indoline derivatives with the correct spatial arrangement.

When synthesizing large, complex organic molecules, it is generally easier to make smaller individual pieces that can then be linked together to make the final product. The award of the 2010 Nobel Prize in chemistry to R. Heck, E. Negishi, and A. Suzuki for their work on palladium-catalyzed cross-coupling indicates the importance of methods for creating bonds between carbon atoms.

Another complication in the synthesis of natural products is that molecules with identical atomic compositions can have different spatial arrangements.

This results from the chirality of carbon centers: when carbon is bound to four different partners, these can be arranged in two different ways that are mirror images of each other (chirality). When two carbon atoms are coupled together, new chiral centers may be formed. Coupling reactions that selectively deliver products with the desired spatial arrangement are thus high on the chemist’s wish list.

Kündig and his co-workers have now made a breakthrough. They have developed a new synthesis for fused indolines, a class of materials that represent an important structural motif in many natural products and pharmaceuticals, including the tumor drug Vinblastin, the antirheumatic drug Ajmalin, and the neurotoxin strychnine. Indoline is a double-ring structure consisting of one aromatic six-carbon ring and a nitrogen-containing five-membered ring; in a fused indoline, the five-membered ring is fused with an additional five- or six-membered ring.

As a starting material, the researchers used a molecule in which the central five-membered ring is still open. One of the carbon atoms to be bound was activated through binding to a bromine atom. Cleavage of the bromine and a hydrogen atom leads to ring closure. This forms a chiral center; so two different spatial arrangements of the product are possible. Thanks to a new special palladium catalyst, the researchers were able to exclusively involve only one C–H bond (of two chemically identical ones) in the reaction. Their success stems form a bulky chiral ligand, known as an N-heterocyclic carbene, which is bound to the palladium atom. The special thing about this novel catalyst is that the selectivity is maintained even at the required high temperatures around 150 °C.

Author: E. Peter Kündig, Université de Genève (Switzerland), http://www.unige.ch/sciences/chiorg/kundig/home
Title: Fused Indolines by Palladium-Catalyzed Asymmetric C-C Coupling Involving an Unactivated Methylene Group

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201102639

E. Peter Kündig | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://www.unige.ch/sciences/chiorg/kundig/home

Further reports about: Coupling Nobel Prize carbon atom organic molecule spatial arrangements

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>