Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals turn to algae for stored food when times get tough

14.05.2013
Researchers at EPFL present new evidence for the crucial role of algae in the survival of their coral hosts. Ultra-high resolution images reveal that the algae temporarily store nutrients as crystals, building up reserves for when supplies run low

Researchers at EPFL present new evidence for the crucial role of algae in the survival of their coral hosts. Ultra-high resolution images reveal that the algae temporarily store nutrients as crystals, building up reserves for when supplies run low.

The relationship between corals and the microscopic algae they harbor is a classic example of biological symbiosis - the mutually beneficial interaction of two species. But crucial details regarding their relationship have remained elusive until now. Using state-of-the-art imaging techniques, Anders Meibom and his team of researchers in the Laboratory for Biological Geochemistry have found new evidence on the vital role algae play in helping corals survive in environments where nutrients are scarce. Their findings were published in the journal mBio on May 16, 2013.

"Coral reefs are the jungles of our oceans - hotspots of biodiversity that easily outcompete all other marine ecosystems," says Christophe Kopp, first-author of the publication. Coral bleaching occurs when the colorful algae abandon their coral host because of environmental strains like rising sea temperatures. On their own, corals struggle to survive in tropical waters where nutrients are scarce, and persistent starvation can have irreversible effects. While it is well known that algae help corals to assimilate certain nutrients, such as nitrogen from seawater, how this occurs, and to what extent the corals can get by on their own, are less clear.

To study how nitrogen-rich nutrients are taken up and processed by the corals and the algae that inhabit them, Meibom's research group teamed up with the Aquarium Tropicale Porte Dorée in Paris to run a series of experiments. There, they fed the corals nitrogen-rich compounds labeled with a heavy nitrogen isotope that they could later trace in the lab. Every few minutes, they extracted bits of coral, which they fixed and analyzed with a state-of-the-art isotopic imaging instrument, a so-called NanoSIMS.

Next, they assembled a timeline of how the nitrogen is processed by the corals and their resident algae by lining up the images of the samples extracted at different times. A combination of electron microscopy and mass spectrometry allowed them to study with unprecedented precision into which cellular compartments the heavier nitrogen isotopes had been incorporated.

Crystal food banks

The research revealed that the corals depend strongly on the algae to extract sufficient nutrients from the water. This was particularly true when the corals were exposed to nitrate, a compound that they are unable to process and assimilate on their own.

But most interestingly, the scientists observed that the algae act as tiny food banks. Their images revealed that the algae temporarily store the nitrogen in the form of uric acid crystals – a fact they later confirmed using crystallographic analysis. This way, the algae can stock up on nutrients when supply is abundant and draw on them when supply drops, leaching some out to their coral host.

Because coral reefs are at the foundation of immense economic activity, both as tourist magnets and as the habitats of some of the most productive fish populations, understanding their fate as the environment they inhabit changes is not only of ecological, but also of economic importance.

The research was performed in close collaboration with EPFL's Interdisciplinary Centre For Electron Microscopy (CIME), the Institute of Earth Science at the University of Lausanne, as well as the Aquarium Tropicale Porte Dorée and the Muséum d'Histoire Naturelle in Paris. The work is funded by an ERC Advanced grant and by a grant from the Swiss National Science Foundation.

Anders Meibom | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>