Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals turn to algae for stored food when times get tough

14.05.2013
Researchers at EPFL present new evidence for the crucial role of algae in the survival of their coral hosts. Ultra-high resolution images reveal that the algae temporarily store nutrients as crystals, building up reserves for when supplies run low

Researchers at EPFL present new evidence for the crucial role of algae in the survival of their coral hosts. Ultra-high resolution images reveal that the algae temporarily store nutrients as crystals, building up reserves for when supplies run low.

The relationship between corals and the microscopic algae they harbor is a classic example of biological symbiosis - the mutually beneficial interaction of two species. But crucial details regarding their relationship have remained elusive until now. Using state-of-the-art imaging techniques, Anders Meibom and his team of researchers in the Laboratory for Biological Geochemistry have found new evidence on the vital role algae play in helping corals survive in environments where nutrients are scarce. Their findings were published in the journal mBio on May 16, 2013.

"Coral reefs are the jungles of our oceans - hotspots of biodiversity that easily outcompete all other marine ecosystems," says Christophe Kopp, first-author of the publication. Coral bleaching occurs when the colorful algae abandon their coral host because of environmental strains like rising sea temperatures. On their own, corals struggle to survive in tropical waters where nutrients are scarce, and persistent starvation can have irreversible effects. While it is well known that algae help corals to assimilate certain nutrients, such as nitrogen from seawater, how this occurs, and to what extent the corals can get by on their own, are less clear.

To study how nitrogen-rich nutrients are taken up and processed by the corals and the algae that inhabit them, Meibom's research group teamed up with the Aquarium Tropicale Porte Dorée in Paris to run a series of experiments. There, they fed the corals nitrogen-rich compounds labeled with a heavy nitrogen isotope that they could later trace in the lab. Every few minutes, they extracted bits of coral, which they fixed and analyzed with a state-of-the-art isotopic imaging instrument, a so-called NanoSIMS.

Next, they assembled a timeline of how the nitrogen is processed by the corals and their resident algae by lining up the images of the samples extracted at different times. A combination of electron microscopy and mass spectrometry allowed them to study with unprecedented precision into which cellular compartments the heavier nitrogen isotopes had been incorporated.

Crystal food banks

The research revealed that the corals depend strongly on the algae to extract sufficient nutrients from the water. This was particularly true when the corals were exposed to nitrate, a compound that they are unable to process and assimilate on their own.

But most interestingly, the scientists observed that the algae act as tiny food banks. Their images revealed that the algae temporarily store the nitrogen in the form of uric acid crystals – a fact they later confirmed using crystallographic analysis. This way, the algae can stock up on nutrients when supply is abundant and draw on them when supply drops, leaching some out to their coral host.

Because coral reefs are at the foundation of immense economic activity, both as tourist magnets and as the habitats of some of the most productive fish populations, understanding their fate as the environment they inhabit changes is not only of ecological, but also of economic importance.

The research was performed in close collaboration with EPFL's Interdisciplinary Centre For Electron Microscopy (CIME), the Institute of Earth Science at the University of Lausanne, as well as the Aquarium Tropicale Porte Dorée and the Muséum d'Histoire Naturelle in Paris. The work is funded by an ERC Advanced grant and by a grant from the Swiss National Science Foundation.

Anders Meibom | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>