Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coordinating across eight agencies to count vulnerable shorebirds

18.06.2015

How do you monitor a vulnerable shorebird species when its breeding areas are scattered across lands managed by a patchwork of state agencies, federal agencies, and non-profit conservation groups?

American Oystercatcher (Haematopus palliates) nests are sparsely distributed, time-intensive to find, and often in remote locations, all adding to the challenge of estimating the size of their breeding population.


Managing American Oystercatchers requires coordinating between many different organizations.

Credit: L. Addison

However, a new study in The Condor: Ornithological Applications demonstrates that a new, simplified survey method, coordinated across 8 agencies, has tremendous potential to provide accurate population estimates and aid in the species' conservation.

Rather than searching for and counting each individual nest, researchers recorded how many oystercatchers they observed within suitable nesting habitat and then modeled the size of the breeding population from this data.

Nathan Hostetter of North Carolina State University and his colleagues in the American Oystercatcher Working Group (amoywg.org) surveyed 93 plots across coastal North Carolina and the eastern shore of Virginia. Multiple agencies, including Audubon North Carolina, the Cape Hatteras National Seashore, North Carolina University, and Virginia Department of Game and Inland Fisheries, collaborated to survey all 93 plots using the same protocol in a single breeding season in 2013.

They estimated that the population of oystercatchers within the survey area was 1,048 individuals, and comparisons with more exhaustive surveys in a subset of the study area show that this number is likely accurate.

"Our study developed as part of larger efforts to investigate Atlantic coast American Oystercatchers across their entire range," explains Hostetter. "Our ability to utilize data collected by multiple agencies that often independently monitor American Oystercatchers was exciting and shows great promise for future range-wide surveys. Standardizing field methods and protocols required a lot of pre-season brainstorming and effort from all agencies. The ability to integrate studies at the end of the season, however, was extremely rewarding and provided insights at spatial scales that no single agency could accomplish alone."

"This study will help advance oystercatcher conservation and management because it provides a robust monitoring framework that will facilitate collaboration across agencies and organizations," adds James Lyons, an oystercatcher expert with the U.S. Fish and Wildlife Service who was not part of the study. "The validation study with intensively monitored sites provides clear evidence that, with the appropriate analytic framework, extensive monitoring can provide reliable information about population status and inform management decisions."

###

"Repeated count surveys help standardize multi-agency estimates of American Oystercatcher (Haematopus palliates) abundance" is available at http://www.aoucospubs.org/doi/full/10.1650/CONDOR-14-185.1.

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology. The journal began in 1899 as the journal of the Cooper Ornithological Club, a group of ornithologists in California that became the Cooper Ornithological Society.

Media Contact

Nathan Hostetter
njhostet@ncsu.edu

http://www.aoucospubs.org 

Nathan Hostetter | EurekAlert!

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>