Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling the immune reaction: Research project aims at developing a substance to boost or suppress the immune response

15.04.2010
A new research project led by Sebastian Springer, Professor of Biochemistry and Cell Biology at Jacobs University, is examining how the body's immune reaction to viruses, bacteria and cancer can be manipulated.

In cooperation with Martin Zacharias, Professor of Theoretical Biophysics at the TU Munich, Springer aims at developing chemical substances to inhibit or enhance the response. These substances could be used either in vaccines to boost the immune reaction or in drugs administered to transplant patients to suppress a possible rejection of the organ. The project is funded by the German Research Foundation (DFG) with a total of 225 000 Euros over an initial three-year period.

Vaccination to prevent diseases such as polio and seasonal influenza is commonplace in Europe today. Just a little needle-prick and one is protected from infections like flue or measles. Weakened or killed forms of the pathogen (the virus or bacterium) are contained in the vaccine to stimulate the body's immune response. White blood cells recognize the pathogen as foreign, destroy it, and remember its structure to be able to identify and kill the same kind of virus when encountered again. These facts have been known for a while. However, the chemical processes that take place inside each cell to trigger the immune reaction are still not understood in detail.

For almost ten years, Sebastian Springer, Jacobs University Professor of Biochemistry and Cell Biology, has been conducting research to better understand and influence these processes. His research focuses on the so called "major histocompatibility complex (MHC) class I molecules", which play a central role in the mammalian immune defense against viruses, intracellular bacteria, and cancer.

As a virus replicates inside a cell, it produces peptides (small pieces of proteins). These peptides bind to MHC class I molecules, which are present inside all cells. The binding process activates the molecule to travel to the cell surface, where they are surveyed by white blood cells called "cytotoxic T lymphocytes" (CTL). If the CTL detect that unusual peptides are bound to the molecules, they induce the infected cell to undergo controlled cell death. This way, the production site of the virus is eliminated and it can't spread out further.

During his studies, Springer discovered a chemical substance that enhances the binding process between MHC class I molecules and peptides. "Picture the part of the molecule that the peptide docks onto as the mouth of a venus flytrap," Springer explains. "The substance we discovered is able to keep this mouth - the binding site - open and thus makes it much easier for the peptide to bind to the molecule. As the binding rate increases, more molecules are triggered to travel to the cell surface and an infected cell can be faster detected and eliminated."

Although highly unstable and not yet ready for use in vaccines or other drugs, the newly discovered substance provides an ideal basis for further research. "By understanding how the substance keeps the binding site open we can begin to develop similar but more stable substances for the use in therapeutic drugs," says Springer.

Combining bioinformatics and biochemistry approaches, Springer and his team will develop and analyze various chemical components in respect of their influence on the peptide-molecule binding process. In a first step, Martin Zacharias, Professor of Theoretical Biophysics at the TU Munich, will recreate the chemical structure of the substances in a computer simulation and imitate a possible interaction between substance and molecule. In a second step, the substances that accelerated or retarded the binding process will then be tested in living cells in Springer's laboratory and further developed.

"If we find a chemical substance that is stable enough to travel into cells when administered in combination with a vaccine or other drug," says Springer, "we could be able to control the immune reaction on a cellular level and thus enhance the affectivity of viral vaccination or, by suppressing the immune reaction, increase the success rate of organ transplantations and therapies used for autoimmune disease patients."

Contact at Jacobs University:
Prof Sebastian Springer | Professor of Biochemistry and Cell Biology
https://www.jacobs-university.de/directory/sspringer
Phone: +49 421 200-3243 | E-Mail: s.springer@jacobs-university.de

Dr. Kristin Beck | idw
Further information:
http://www.jacobs-university.de/directory/sspringer

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>