Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling the immune reaction: Research project aims at developing a substance to boost or suppress the immune response

15.04.2010
A new research project led by Sebastian Springer, Professor of Biochemistry and Cell Biology at Jacobs University, is examining how the body's immune reaction to viruses, bacteria and cancer can be manipulated.

In cooperation with Martin Zacharias, Professor of Theoretical Biophysics at the TU Munich, Springer aims at developing chemical substances to inhibit or enhance the response. These substances could be used either in vaccines to boost the immune reaction or in drugs administered to transplant patients to suppress a possible rejection of the organ. The project is funded by the German Research Foundation (DFG) with a total of 225 000 Euros over an initial three-year period.

Vaccination to prevent diseases such as polio and seasonal influenza is commonplace in Europe today. Just a little needle-prick and one is protected from infections like flue or measles. Weakened or killed forms of the pathogen (the virus or bacterium) are contained in the vaccine to stimulate the body's immune response. White blood cells recognize the pathogen as foreign, destroy it, and remember its structure to be able to identify and kill the same kind of virus when encountered again. These facts have been known for a while. However, the chemical processes that take place inside each cell to trigger the immune reaction are still not understood in detail.

For almost ten years, Sebastian Springer, Jacobs University Professor of Biochemistry and Cell Biology, has been conducting research to better understand and influence these processes. His research focuses on the so called "major histocompatibility complex (MHC) class I molecules", which play a central role in the mammalian immune defense against viruses, intracellular bacteria, and cancer.

As a virus replicates inside a cell, it produces peptides (small pieces of proteins). These peptides bind to MHC class I molecules, which are present inside all cells. The binding process activates the molecule to travel to the cell surface, where they are surveyed by white blood cells called "cytotoxic T lymphocytes" (CTL). If the CTL detect that unusual peptides are bound to the molecules, they induce the infected cell to undergo controlled cell death. This way, the production site of the virus is eliminated and it can't spread out further.

During his studies, Springer discovered a chemical substance that enhances the binding process between MHC class I molecules and peptides. "Picture the part of the molecule that the peptide docks onto as the mouth of a venus flytrap," Springer explains. "The substance we discovered is able to keep this mouth - the binding site - open and thus makes it much easier for the peptide to bind to the molecule. As the binding rate increases, more molecules are triggered to travel to the cell surface and an infected cell can be faster detected and eliminated."

Although highly unstable and not yet ready for use in vaccines or other drugs, the newly discovered substance provides an ideal basis for further research. "By understanding how the substance keeps the binding site open we can begin to develop similar but more stable substances for the use in therapeutic drugs," says Springer.

Combining bioinformatics and biochemistry approaches, Springer and his team will develop and analyze various chemical components in respect of their influence on the peptide-molecule binding process. In a first step, Martin Zacharias, Professor of Theoretical Biophysics at the TU Munich, will recreate the chemical structure of the substances in a computer simulation and imitate a possible interaction between substance and molecule. In a second step, the substances that accelerated or retarded the binding process will then be tested in living cells in Springer's laboratory and further developed.

"If we find a chemical substance that is stable enough to travel into cells when administered in combination with a vaccine or other drug," says Springer, "we could be able to control the immune reaction on a cellular level and thus enhance the affectivity of viral vaccination or, by suppressing the immune reaction, increase the success rate of organ transplantations and therapies used for autoimmune disease patients."

Contact at Jacobs University:
Prof Sebastian Springer | Professor of Biochemistry and Cell Biology
https://www.jacobs-university.de/directory/sspringer
Phone: +49 421 200-3243 | E-Mail: s.springer@jacobs-university.de

Dr. Kristin Beck | idw
Further information:
http://www.jacobs-university.de/directory/sspringer

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>