Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling the immune reaction: Research project aims at developing a substance to boost or suppress the immune response

15.04.2010
A new research project led by Sebastian Springer, Professor of Biochemistry and Cell Biology at Jacobs University, is examining how the body's immune reaction to viruses, bacteria and cancer can be manipulated.

In cooperation with Martin Zacharias, Professor of Theoretical Biophysics at the TU Munich, Springer aims at developing chemical substances to inhibit or enhance the response. These substances could be used either in vaccines to boost the immune reaction or in drugs administered to transplant patients to suppress a possible rejection of the organ. The project is funded by the German Research Foundation (DFG) with a total of 225 000 Euros over an initial three-year period.

Vaccination to prevent diseases such as polio and seasonal influenza is commonplace in Europe today. Just a little needle-prick and one is protected from infections like flue or measles. Weakened or killed forms of the pathogen (the virus or bacterium) are contained in the vaccine to stimulate the body's immune response. White blood cells recognize the pathogen as foreign, destroy it, and remember its structure to be able to identify and kill the same kind of virus when encountered again. These facts have been known for a while. However, the chemical processes that take place inside each cell to trigger the immune reaction are still not understood in detail.

For almost ten years, Sebastian Springer, Jacobs University Professor of Biochemistry and Cell Biology, has been conducting research to better understand and influence these processes. His research focuses on the so called "major histocompatibility complex (MHC) class I molecules", which play a central role in the mammalian immune defense against viruses, intracellular bacteria, and cancer.

As a virus replicates inside a cell, it produces peptides (small pieces of proteins). These peptides bind to MHC class I molecules, which are present inside all cells. The binding process activates the molecule to travel to the cell surface, where they are surveyed by white blood cells called "cytotoxic T lymphocytes" (CTL). If the CTL detect that unusual peptides are bound to the molecules, they induce the infected cell to undergo controlled cell death. This way, the production site of the virus is eliminated and it can't spread out further.

During his studies, Springer discovered a chemical substance that enhances the binding process between MHC class I molecules and peptides. "Picture the part of the molecule that the peptide docks onto as the mouth of a venus flytrap," Springer explains. "The substance we discovered is able to keep this mouth - the binding site - open and thus makes it much easier for the peptide to bind to the molecule. As the binding rate increases, more molecules are triggered to travel to the cell surface and an infected cell can be faster detected and eliminated."

Although highly unstable and not yet ready for use in vaccines or other drugs, the newly discovered substance provides an ideal basis for further research. "By understanding how the substance keeps the binding site open we can begin to develop similar but more stable substances for the use in therapeutic drugs," says Springer.

Combining bioinformatics and biochemistry approaches, Springer and his team will develop and analyze various chemical components in respect of their influence on the peptide-molecule binding process. In a first step, Martin Zacharias, Professor of Theoretical Biophysics at the TU Munich, will recreate the chemical structure of the substances in a computer simulation and imitate a possible interaction between substance and molecule. In a second step, the substances that accelerated or retarded the binding process will then be tested in living cells in Springer's laboratory and further developed.

"If we find a chemical substance that is stable enough to travel into cells when administered in combination with a vaccine or other drug," says Springer, "we could be able to control the immune reaction on a cellular level and thus enhance the affectivity of viral vaccination or, by suppressing the immune reaction, increase the success rate of organ transplantations and therapies used for autoimmune disease patients."

Contact at Jacobs University:
Prof Sebastian Springer | Professor of Biochemistry and Cell Biology
https://www.jacobs-university.de/directory/sspringer
Phone: +49 421 200-3243 | E-Mail: s.springer@jacobs-university.de

Dr. Kristin Beck | idw
Further information:
http://www.jacobs-university.de/directory/sspringer

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>