Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way to control disease-spreading mosquitoes: Make them hold their urine

04.03.2010
Cornell researchers have found a protein that may lead to a new way to control mosquitoes that spread dengue fever, yellow fever and other diseases when they feed on humans: Prevent them from urinating as they feed on blood.

The work may lead to the development of new insecticides to disrupt the mosquito's renal system, which contributes to a mosquito's survival after feeding on blood.

Aedes aegypti mosquitoes transmit the virus that causes dengue fever, putting 40 percent of the world's population at risk of catching the disease, and causing 50 million to 100 million infections (22,000 deaths) annually. They pick up diseases when feeding on infected hosts and can then infect new hosts when they feed again. Currently, no vaccine or treatment protects against dengue, so the only way to stop its spread is by controlling mosquitoes.

But now, a Cornell study published in the March 4, 2010 issue of the American Journal of Physiology – Regulatory, Integrative and Comparative Physiology has identified a protein from the renal tubules of Aedes aegypti mosquitoes that appears to be involved in promoting urination as they feed on blood. When mosquitoes consume and process blood meals, they must urinate to prevent fluid and salt overloads that can kill them.

Also, "they have to undergo rapid urination when feeding, or they can't fly away," said Peter Piermarini, the paper's lead author and a postdoctoral research associate in the lab of Klaus Beyenbach, a professor of biomedical sciences in Cornell's College of Veterinary Medicine and the paper's senior author. "Too much weight will impair the mosquito's flight performance, like an aircraft with too much payload. [If they get too heavy,] they may become more susceptible to being swatted by their host or eaten by a predator," said Piermarini.

The researchers discovered a key protein expressed in the mosquito's renal system that contributes to urination. In lab experiments, Piermarini, Beyenbach and colleagues demonstrated that blocking the protein's function in the renal tubules with a drug reverses the enhanced rates of urination that would occur during blood feeding.

"Thus, blocking the function of this protein in natural populations of mosquitoes may limit their ability to survive the physiological stresses of a blood meal and to further transmit viruses," said Piermarini.

The Aedes aegypti renal system also serves as a valuable model for parts of the mammalian kidney, with similar cells in each system and possibly similar proteins, said the authors.

Co-authors include Laura Grogan, a participant in the Leadership Program for Veterinary Scholars at Cornell in 2007; Kenneth Lau '08, a former research technician in the Department of Biomedical Sciences; and Li Wang '10, an honors student in physiology.

The National Institutes of Health and the National Science Foundation funded the study.

Joe Schwartz | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Viruses support photosynthesis in bacteria – an evolutionary advantage?
23.02.2017 | Technische Universität Kaiserslautern

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>